• Title/Summary/Keyword: Agarivorans albus

Search Result 3, Processing Time 0.038 seconds

Effect of Agarase Signal Peptide from Agarivorans albus YKW-34 on Protein Secretion in Escherichia coli (대장균에서 단백질 분비에 대한 Agarivorans albus YKW-34의 Agarase 시그널펩티드의 효과)

  • Lee, Joo-Young;Song, Dae-Geun;Son, Jin-Ki;Pan, Cheol-Ho
    • Journal of Applied Biological Chemistry
    • /
    • v.53 no.2
    • /
    • pp.105-107
    • /
    • 2010
  • To overcome the limitation of E. coli expression system such as inclusion body formation and disulfide bond failure, we tried to express the heterologous protein as a secreted form. We adopted agarase signal peptide (ASP; 23 amino acid residues) from Agarivorans albus YKW-34 which is one of marine bacteia. When we used ASP to express $\beta$-agarase, about 42% activity was detected in media.

Gene Cloning, Expression, and Characterization of a $\beta$-Agarase, AgaB34, from Agarivorans albus YKW-34

  • Fu, Xiao Ting;Pan, Cheol-Ho;Lin, Hong;Kim, Sang-Moo
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.3
    • /
    • pp.257-264
    • /
    • 2009
  • A $\beta$-agarase gene, agaB34, was functionally cloned from the genomic DNA of a marine bacterium, Agarivorans albus YKW-34. The open reading frame of agaB34 consisted of 1,362 bp encoding 453 amino acids. The deduced amino acid sequence, consisting of a typical N-terminal signal peptide followed by a catalytic domain of glycoside hydrolase family 16 (GH-16) and a carbohydrate-binding module (CBM), showed 37-86% identity to those of agarases belonging to family GH-16. The recombinant enzyme (rAgaB34) with a molecular mass of 49 kDa was produced extracellularly using Escherichia coli $DH5{\alpha}$ as a host. The purified rAgaB34 was a $\beta$-agarase yielding neoagarotetraose (NA4) as the main product. It acted on neoagarohexaose to produce NA4 and neoagarobiose, but it could not further degrade NA4. The maximal activity of rAgaB34 was observed at $30^{\circ}C$ and pH 7.0. It was stable over pH 5.0-9.0 and at temperatures up to $50^{\circ}C$. Its specific activity and $k_{cat}/K_m$ value for agarose were 242 U/mg and $1.7{\times}10^6/sM$, respectively. The activity of rAgaB34 was not affected by metal ions commonly existing in seawater. It was resistant to chelating reagents (EDTA, EGTA), reducing reagents (DTT, $\beta$-mercaptoethanol), and denaturing reagents (SDS and urea). The E. coli cell harboring the pUC18-derived agarase expression vector was able to efficiently excrete agarase into the culture medium. Hence, this expression system might be used to express secretory proteins.

Development of a thermo-stabel ${\beta}-agarase$ from marine organism

  • Lee, Sang-Hyeon
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.31-32
    • /
    • 2005
  • Neoagaro-oligosaccharides are produced only by enzymatic degradation of agarose by ${\beta}-agarase.^{1)}$ Neoagaro-oligosaccharides inhibit the growth of bacteria, slow the rate of degradation of starch, are used as low-calorie additives to improve food quality, and have macrophage-stimulating activity. Furthermore, neoagarobiose is a rare reagent that has both moisturizing effect on skin and whitening effect on melanoma $cells.^{2)}$ An agar-degrading marine bacterium was isolated from the sea water at the northeast coast in Cheju island, Korea. The strain was gram negative, aerobic, and motile rod. The 16S rRNA of the strain had the closest match of 98% homology, with that from Agarivorans albus. On the basis of several phenotypic characters and a phylogenetic analysis, this strain was designated Agarivorans sp. JA-1. In solid agar plate, Agarivorans sp. JA-1 produced a diffusible agarase that caused agar softening around the colonies. Agarivorans sp. JA-1 was cultured for 36 hr in marine broth 2216 (Difco, USA) and the supernatant that containing an extracellular ${\beta}-agarase$ was prepared by centrifugation of culture media. The enzyme exhibited relatively strong activity at $40^{\circ}C$ and was stable up to $60^{\circ}C$. Using PCR primers derived from the ${\beta}-agarase$ gene of Vibrio sp., the gene encoding ${\beta}-agarase$ from Agarivorans sp. JA-1 was cloned and sequenced. The structural gene consists of 2931 bp encoding 976 amino acids with a predicted molecular weight of 107,360 Da. The deduced amino acid sequence showed 99% and 34% homology to $agaA^{2)}$ and $agaB^{2)}$ genes for ${\beta}-agarase$ from Vibrio sp., respectively. The expression plasmid for ${\beta}-agarase$ gene of Agarivorans sp. JA-1 is being constructed and the recombinant enzyme will be biochemically characterized.

  • PDF