• Title/Summary/Keyword: Ag and ITO electrode

Search Result 79, Processing Time 0.03 seconds

A Study on the Exothermic Properties of ITO/Ag/ITO Multilayer Transparent Electrode Depending on Metal Layer Thickness (금속층 두께에 따른 ITO/Ag/ITO 다층 투명 전극의 발열 특성 연구)

  • Min, Hye-Jin;Kang, Ye-Jina;Son, Hye-Won;Sin, So-Hyun;Hwang, Min-Ho;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.1
    • /
    • pp.37-43
    • /
    • 2022
  • In this study, we investigated the optical, electrical and exothermic characteristics of ITO/Ag/ITO multilayer structures prepared with various Ag thicknesses on quartz and PI substrates. The transparent conducting properties of the ITO/Ag/ITO multilayer films depended on the thickness of the mid-layer metal film. The ITO/Ag (14 nm)/ITO showed the highest Haccke's figure of merit (FOM) of approximately 19.3×10-3 Ω-1. In addition, the exothermic property depended on the substrate. For an applied voltage of 3.7 V, the ITO/Ag (14 nm)/ITO multilayers on quartz and PI substrates were heated up to 110℃ and 200℃, respectively. The bending tests demonstrated a comparable flexibility of the ITO/Ag/IT multilayer to other transparent electrodes, indicating the potential of ITO/Ag/ITO multilayer as a flexible transparent conducting heater.

Study of ITO/ZnO/Ag/ZnO/ITO Multilayer Films for the Application of a very Low Resistance Transparent Electrode on Polymer Substrate

  • Han, Jin-Woo;Han, Jeong-Min;Kim, Byoung-Yong;Kim, Young-Hwan;Kim, Jong-Yeon;Ok, Chul-Ho;Seo, Dae-Shik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.9
    • /
    • pp.798-801
    • /
    • 2007
  • Multilayer transparent electrodes, having a much lower electrical resistance than the widely used transparent conducting oxide electrodes, were prepared by using radio frequency magnetron sputtering. The multilayer structure consisted of five layers, indium tin oxided (ITO)/zinc oxide (ZnO)/Ag/zinc oxide (ZnO)/ITO. With about 50 nm thick ITO films, the multilayer showed a high optical transmittance in the visible range of the spectrum and had color neutrality. The electrical and optical properties of ITO/ZnO/Ag/ZnO/ITO multilayer were changed mainly by Ag film properties, which were affected by the deposition process of the upper layer. Especially ZnO layer was improved to adhesion of Ag and ITO. A high quality transparent electrode, having a resistance as low as and a high optical transmittance of 91% at 550 nm, was obtained. It could satisfy the requirement for the flexible OLED and LCD.

Improvement of Optical and Electrical Properties of ITO/Ag/ITO Thin Films for Transparent Conducting Electrode (투명 전극 ITO/Ag/ITO 박막의 광학적 및 전기적 특성 향상 연구)

  • Shin, Yeon Bae;Kang, Dong-Won;Kim, Jeha
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.11
    • /
    • pp.740-744
    • /
    • 2017
  • Herein we studied the electrical and optical properties of indium tin oxide ITO/Ag/ITO multilayer thin films for application in transparent conducting electrodes. The ITO and Ag thin films were deposited onto soda lime glass (SLG) using radiofrequency and DC-sputtering methods, respectively. The as-synthesized ITO/Ag/ITO multilayer thin films were analyzed using 4-point probe, UV-Visible spectroscopy, and Hall measurement. We observed a rapid increase in electron concentration with increasing Ag thickness. However, electron mobility decreased with increasing Ag thickness. Finally, ITO/Ag/ITO multilayer thin films showed a characteristic low sheet resistance of $18{\Omega}/sq$ and high optical transmittance value (80%) with variation of Ag thickness (5~10 nm).

Transparent ITO/Ag/i-ZnO Multilayer Thin Film enhances Lowing Sheet Resistance

  • Kim, Sungyoung;Kim, Sangbo;Heo, Jaeseok;Cho, Eou-Sik;Kwon, Sang Jik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.187-187
    • /
    • 2015
  • The past thirty years have seen increasingly rapid advances in the field of Indium Tin Oxide (ITO) transparent thin film.[1] However, a major problem with this ITO thin film application is high cost compared with other transparent thin film materials.[2] So far, in order to overcome this disadvantage, we show a transparent ITO/Ag/i-ZnO multilayer thin film electrode can be the solution. In comparison with using amount of ITO as a transparent conducting material, intrinsic-Zinc-Oxide (i-ZnO) based on ITO/Ag/i-ZnO multilayer thin film showed cost-effective and it has not only highly transparent but also conductive properties. The aim of this research has therefore been to try and establish how ITO/Ag/i-ZnO multilayer thin film would be more effective than ITO thin film. Herein, we report ITO/Ag/i-ZnO multilayer thin film properties by using optical spectroscopic method and measuring sheet resistance. At a certain total thickness of thin film, sheet resistance of ITO/Ag/i-ZnO multilayer was drastically decreased than ITO layer approximately $40{\Omega}/{\square}$ at same visible light transmittance.(minimal point $5.2{\Omega}/{\square}$). Tendency, which shows lowly sheet resistive in a certain transmittance, has been observed, hence, it should be suitable for transparent electrode device.

  • PDF

Continuous Roll-to-Roll(R2R) sputtering system for growing flexible and transparent conducting oxide electrode at room temperature

  • Park, Yong-Seok;Jeong, Jin-A;Park, Ho-Kyun;Kim, Han-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1575-1577
    • /
    • 2009
  • We have investigated the characteristics of transparent indium zinc oxide(IZO)/Ag/IZO multilayer electrode grown on polyethylene terephthalate (PET) substrates using a specially designed roll-to-roll sputtering system for use in flexible device are described. By the continuous R2R sputtering of the bottom IZO, Ag, and top IZO layers at room temperature, we were able to fabricate an IZO-Ag-IZO multilayer electrode with a sheet resistance of 6.15 ${\Omega}$/square, optical transmittance of 87.4 %, and figure of merit value of 42.03 10-3 ${\Omega}$-1. In addition, the IZO-Ag-IZO multilayer electrode exhibited superior flexibility to the RTR sputter grown single ITO electrode, due to the existence a ductile Ag layer between the IZO layers. This indicates that the RTR sputtered IZO-Ag-IZO multilayer is a promising flexible electrode that can substitute for the conventional single ITO electrode grown by bath type sputtering for use in low cost flexible device, due to its low resistance, high transparency, superior flexibility and fast preparation by the R2R process.

  • PDF

Enhanced Infrared detection of photodetector using Ag nanowire-embedded ITO Layers

  • Kim, Hong-Sik;Kim, Jun-Dong;Patel, Malkeshkumar;Kim, Ja-Yeon;Gwon, Min-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.244.1-244.1
    • /
    • 2015
  • The Ag Nanowire is one of the materials that are widely studied as alternatives to ITO and is available for large area, low cost process and the flexible transparent electrode. However, Ag nanowire can have the problem of a lack of stability at high temperatures, making this impossible to form a film. Using a structure of ITO/AgNW/ITO in photodetector device, we improved the properties of the ITO in the IR region and improved the thermal stability of the AgNW. The structure of ITO/AgNW/ITO has a high transmittance value of 89% at a wavelength of 900 nm and provide a good electrical property. The AgNWs embedded ITO film has a high transmittance, this is because of the light scattering from the AgNW. The thermal stability of the developed ITO/AgNWs/ITO films were investigated and found AgNWs embedded ITO films posses considerable high stability compared to the solo AgNWs on the Si surface. The ITO/AgNWs/ITO device showed a improved photo-response ratio compared to those of the conventional TC device in IR region. This is attributed to the high transmittance and low sheet resistance. We suggest an effective design scheme for IR-sensitive photodetection by using an AgNW embedded ITO.

  • PDF

Highly Conductive Flexible Transparent Electrode Using Silver Nanowires & Conducting Polymer

  • Seo, Dong-Min;Kim, Sang-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.547-547
    • /
    • 2012
  • As displays become larger and solar cells become cheaper, there is an increasing need for low-cost transparent electrodes. Intensive effort has been made to replace ITO (Indium Tin Oxide) based transparent electrode with cheap and flexible ones. Among those, silver nanowires have got limelight because of its great conductivity and flexibility. Even though the electric property of the Ag nanowire based transparent electrode surpassed ITO, the optical property needs to be improved (lower transmittance, higher haze). Here, we reported transparent electrode based on Ag nanowires and conducting polymer to improve optical properties. The Ag nanowires are coated onto PET films and the resulting transparent electrode film shows $200ohm/{\Box}$ resistance and > 90% optical transmittance.

  • PDF

The Effect of Ag thickness on Optical and Electrical Properties of V2O5/Ag/ITO Multilayer (Ag의 두께에 따른 V2O5/Ag/ITO 구조의 다층 박막의 광학적, 전기적 특성)

  • Ko, Younghee;Park, Gwanghoon;Ko, Hang-Ju;Ha, Jun-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.1
    • /
    • pp.7-11
    • /
    • 2014
  • Recently, the buffer layers consisting of poly (3,4-ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT-PSS) are extensively used to improve power conversion efficiency (PCE) of organic solar cells. However, PEDOT-PSS is not suitable for mass production of organic solar cells due to its intrinsic acid and hygroscopic properties. Moreover, because of chemical reactions between indium tin oxide (ITO) layer and PEDOT-PSS layer, the interface is not stable. For these reasons, alternative materials such as $V_2O_5$ have been developed to be an effective buffer layer. In this work, we used $V_2O_5$/Ag/ITO multilayer structure for the anode buffer layer. With variation of thickness of Ag layer, we investigated the optical and electrical properties of $V_2O_5$/Ag/ITO multi-layer films. As a result, we found that the electrical properties were improved with increasing Ag thickness while optical transmittance decreases in visible wavelength region. From the calculation of figure of merit (FOM) which is used to evaluate proper structure for transparent of optoelectronic, $V_2O_5$/Ag/ITO multilayer electrode was optimized with 4 nm thick Ag layer in optical (88% in transmittance) and electrical ($4{\times}10^{-4}{\Omega}cm$) properties. This indicates that $V_2O_5$/Ag/ITO multilayer electrode could be a candidate for the anode of optoelectronic devices.

A Study on the Electrochemical Characteristics of Langmuir-Blodgett Nano-Films of Phospholipid Compound (인지질 화합물의 나노 Langmuir-Blodgett막의 전기화학적 특성에 관한 연구)

  • Jung, A-Jin;Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.311-316
    • /
    • 2012
  • We are investigated to an electrochemical characteristic for Langmuir-Blodgett (LB) films by cyclic voltammetry method. The phospholipid compound was deposited by using the LB method on the Indium tin oxide(ITO) glass. We tried to measure the electrochemical by using cyclic voltammetry with three-electrode system(an Ag/AgCl reference electrode, a platinum wire counter electrode and LB film-coated ITO working electrode) in 0.5, 1.0, 1.5 and 2.0 N $NaClO_4$ solution. A measuring range was reduced from initial potential -1350 mV, continuously oxidized to 1650 mV. As a result, LB films of the phospholipid compounds are appeared irreversible process caused by only the oxidation current from the cyclic voltammogram. The diffusivity(D) effect of LB films decreased with increasing of phospholipid compound amount.

Silver Nanowire Anode-Based, Large-Area Indium Tin Oxide-Free Organic Photovoltaic Cells Fabricated by the Knife Coating Method (나이프 코팅 기법으로 제작한 은 나노와이어 투명전극 기반의 대면적 ITO-Free 유기 태양전지)

  • Han, Kyuhyo;Kim, Gunwoo;Lee, Jaehak;Seok, Jaeyoung;Yang, Minyang
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.43-48
    • /
    • 2015
  • Silver nanowire (AgNW) is a material that is increasingly being used for transparent electrodes, as a substitute for indium tin oxide (ITO), owing to its flexibility, high transmittance to sheet resistance ratio, and simple production process. This study involves manufacturing large-area organic photovoltaic cells (OPVs) deposited on AgNW electrodes. We compared the efficiency of OPVs with ITO and AgNW electrodes. The results verified that an OPV with an AgNW electrode performed better than that with an ITO electrode. Furthermore, by using the knife coating method, we successfully fabricated large-area OPVs without the loss of efficiency. Use of AgNW instead of ITO demonstrated that an OPV could be produced on various substrates by the solution process method, dropping the productions costs significantly. Additionally, by using the knife coating method, the process time and amount of wasted solution are reduced. This leads to an increase in the efficient fabrication of the OPV.