• Title/Summary/Keyword: Ag/Cu precipitation

Search Result 39, Processing Time 0.023 seconds

Purification and Properties of Protease from Thermophilic Actinomyces (고온성 방선균이 생산하는 단백질 분해효소의 정제와 특성)

  • 김중배
    • The Korean Journal of Food And Nutrition
    • /
    • v.13 no.2
    • /
    • pp.176-180
    • /
    • 2000
  • Microbial protease has been interesting due to the biological roles in the producing microorganism. A thermophilic Actinomyces produing protease was isolated from soil. The optimal medium composition and culture conditions for maximum protease production was as follows 0.5% soluble starch, 0.5% yeast extract. 0.1% K2HPO4, 0.05% CaCl2, initial pH 8.0 at 50$^{\circ}C$ for 48hours. The protease was purified by the procedure of ammonium sulfate precipitation, anion exchange chromatography(LC), DEAE high performance liquid chromatography and GPC HPLC. The purification fold of the purified enzyme was increased about 22.6. The optimal pH and temperature for reaction of the purified enzyme were 7.5 and 60$^{\circ}C$. The purified enzyme was stable for the pH range from 6.0 to 8.5, but was unstable when treated at 80$^{\circ}C$ for 10 minutes. The activity of the enzyme was inhibited by Ag+ and Cu2+.

  • PDF

Characterization of different Dioxygenases isolated from Delftia sp. JK-2 capable of degrading Aromatic Compounds, Aniline, Benzoate, and p-Hydroxybenzoate (방향족 화합물인 Aniline, benzoate, p-Hydroxybenzoate를 분해하는 Delftia sp. JK-2에서 분리된 Dioxygenases의 특성연구)

  • 오계헌;황선영;천재우;강형일
    • KSBB Journal
    • /
    • v.19 no.1
    • /
    • pp.50-56
    • /
    • 2004
  • The aim of this work was to investigate the purification and characterization dixoygenases isolated from Delftia sp. JK-2, which could utilize aniline, benzoate, and p-hydroxybenoate as sole carbon and energy source. Catechol 1,2-dioxygenase (C1, 2O), catechol 2,3-dioxygenase(C2, 3O), and protocatechuate 4,5-dioxygenase(4,5-PCD) were isolated by benzoate, aniline, and p-hydroxybenzoate. In initial experiments, several characteristics of C1 ,2O, C2, 3O, and 4,5-PCD separated with ammonium sulfate precipitation, DEAE-sepharose, and Q-sepharose were investigated. Specific activity of C1 ,2O, C2, 3O, and 4,5-PCD were approximately 3.3 unit/mg, 4.7 unit/mg, and 2.0 unit/mg. C1 ,2O and C2, 3O demonstrated their enzyme activities to other substrates, catechol and 4-methylcatechol. 4,5-PCD showed the specific activity to the only substrate, protocatechuate, but the substrates(e.g., catechol, 3-methylcatechol, 4-methylcatechol, 4-chlorocatechol, 4-nitrocatechol) did not show any specific activities in this work. The optimum temperature of C1, 2O, C2, 3O, and 4,5-PCD were 30$^{\circ}C$, and the optimal pHs were approximately 8, 8, and 7, respectively. Ag$\^$+/, Hg$\^$+/, Cu$\^$2+/ showed inhibitory effect on the activity of C1, 2O and C2, 3O, but Ag$\^$+/, Hg$\^$+/, Cu$\^$2+/, Fe$\^$3+/ showed inhibitory effect on the activity of 4,5-PCD. Molecular weight of the C1, 2O, C2, 3O, and 4,5-PCD were determined to approximately 60 kDa,35 kDa, and 62 kDa by SDS-PAGE.

Separation of Valuable Metal from Waste Photovoltaic Ribbon through Extraction and Precipitation

  • Chen, Wei-Sheng;Chen, Yen-Jung;Yueh, Kai-Chieh
    • Resources Recycling
    • /
    • v.29 no.2
    • /
    • pp.69-77
    • /
    • 2020
  • With rapid increasing production and installation, recycling of photovoltaic modules has become the main issue. According to the research, the accumulation of waste modules will reach to 8600 tons in 2030. Moreover, Crystalline-silicon (c-Si) Photovoltaic modules account for more than 90% of the waste. C-Si PV modules contain 1.3% of weight of photovoltaic ribbon inside which contains the most of lead, tin and copper in the PV modules, which would cause environmental and humility problem. This study provided a valuable metal separation process for PV ribbons. Ribbons content 82.1% of Cu, 8.9% of Sn, 5.2% of Pb, and 3.1% of Ag. All of them were leached by 3M of hydrochloric acid in the optimal condition. Ag was halogenated to AgCl and precipitated. Cu ion was extracted and separated from Pb and Sn by Lix984N then stripped by 3M H2SO4. The effect of the optimal parameters of extraction was also studied in this essay. The maximum extraction efficiency of Cu ion was 99.64%. The separation condition of Pb and Sn were obtained by adjusting the pH value to 4 thought ammonia to precipitate and separate Pb and Sn. The recovery of Pb and Sn can reach 99%.

Heavy Metal Contamination and the Roles of Retention Pond and Hydrologic Mixing for Removal of Heavy Metals in Mine Drainage, Kwangyang Au-Ag Mine Area (광양 폐 금-은 광산 지역 광산폐수의 중금속 오염과 중금속의 제거에 있어 소택지와 지류 혼합의 역할 평가)

  • 정헌복;윤성택;김순오;소칠섭;정명채
    • The Journal of Engineering Geology
    • /
    • v.13 no.1
    • /
    • pp.29-50
    • /
    • 2003
  • Physicochemical Properties of acid mine water of the Chonam-ri Creek and the Sagok-ri Creek in the Kwangyang Au-Ag mine area were determined using geochemical approaches. Metal contamination (Cd, Cu, Pb, Zn) is more serious in the Chonam-ri Creek than in the Sagok-ri Creek. However, the contents of Al and Fe is higher in the Sagok-ri Creek. Such differences between the two creeks probably reflect the abundance and composition of ore minerals. The attenuation processes for acid mine water in both creeks were investigated. In the Chonam-ri Creek, a small retention pond which contains limestone plays an important role in the removal of heavy metals by adsorption or coprecipitation due to increase of pH. The capacity of metal scavenging in this pond depends on the seasonal variation of inflow volume. Reddish yellow precipitates sampled in the Chonam-ri Creek were analyzed by XRD, SEM-EDS, EPMA, and chemical decomposition. The precipitates mainly consist of goethite and are also enriched in Al, Mn, Cu and Zn. This inditates that precipitation of goethite is important for scavenging those trace elements, possibly due to adsorption or coprecipitation. In the Sagok-ri Creek, on the other hand, hydrologic mixing of uncontaminated tributaries results in removal of heavy metals with iron hydroxides precipitation due to the pH increase. The mechanisms proposed for metal attenuation at the confluence between contaminated mine water and uncontaminated tributary water are also explained by the property-property plots.

The Production and Properties of Pretense by Serratia sp. 2000-1 Isolated from Clinical Specimes (임상검체에서 분리된 Serratia sp. 2000-1에 의한 Pretense의 생산 및 효소학적 성질)

  • 김태전;김승곤;김상택
    • Biomedical Science Letters
    • /
    • v.6 no.3
    • /
    • pp.209-221
    • /
    • 2000
  • The purpose of this study was to investigate the practical availability of pretense production that can be used at home after isolating Serratia sp.2000-1 which produced extracellular pretense from clinical specimen. Basic production conditions and partial enzymatic characteristics of pretense produced by Serratia sp. 2000-1 was as follows: The kind and concentration of carbohydrate, nitrogen and metal salts for optimal enzyme production condition were each identified as the concentration of 1.5% glucose, 2.0% CSP, and 0.1% CaCl$_2$, and the optimal temperature, time and initial pH for culture were each 3$0^{\circ}C$, 72 hours, and pH 8.0. The final enzymatic yeild that was purified by 3 steps with ammonium sulfate precipitation (45~80%), DEAE-cellulose column chromatography, and Sephadex G-200 gel chromatography was 14.4%, and enzyme inactivity rate increased approximately 291314s. The optimal temperature and pH for purified pretense activity were 35$^{\circ}C$ and pH 7.0~8.0, and purified pretense activity was relatively stable by 4$0^{\circ}C$ at pH 6~10 for 30 min, however heating at 6$0^{\circ}C$ for 30 min, it liminated detectable pretense activity. The pretense activity was activated by $Mg^{2+}$, $Ba^{2+}$, $Ca^{2+}$, Mn$^{2+}$, but inactiviaed by Hg$^{2+}$, Ag$^{2+}$, Cu$^{2+}$, and the pretense activity was inhibited strongly by SDS among enzyme activity inhibitors. Further study is required to evaluate the practical availability of pretense production that can be used at home by isolating Serratia sp. from more clinical specimen and examining pretense more in details.

  • PDF

Characterization of NAD(P)H-nitroreductase Purified from the TNT-degrading Bacterium, Stenotrophomonas sp. OK-5 (폭약 TNT 분해세균 Stenotrophomonas sp. OK-5에서 분리된 NAD(P)H-nitroreductase의 정제 및 특성 연구)

  • Ho, Eun-Mi;Cheon, Jae-U;Gang, Hyeong-Il;O, Gye-Heon
    • Korean Journal of Microbiology
    • /
    • v.39 no.4
    • /
    • pp.223-229
    • /
    • 2003
  • The purpose of this work was to perform the characterization of NAD(P)H-nitroreductase isolated from Stenotrophomonas sp. OK-5 capable of degrading 2,4,6-trinitrotoluene (TNT). Initially, NADP(H)-nitroreductase by a series of purification processes including ammonium sulfate precipitation, DEAE-sepharose, andQ-sepharose was prepared. From samples harvested from fraction collector, three different fractions (I, II & III)having the enzyme activity of NAD(P)H-itroreductase were detected. Specific activities of three fractions I, II,and III of NAD(P)H-nitroreductase were determined to approximately 5.06 unit/mg, 4.95 unit/mg and 4.86 unit/mg, and concentrated to 10.5, 9.8, and 8.9-fold compared to crude extract, respectively. Among these three fractions,the fraction I of NAD(P)H-nitroreductase demonstrated the highest specific activity in this experiment. Several factors affecting on the enzyme activity of NAD(P)H-nitroreductase (fractions I, II & III) were investigated.The optimum temperature of all NAD(P)H-nitroreductase (fractions I, II & III) was 30oC, and the optimal pH was approximately 7.5. Metal ions such as Ag+, Cu2+, Hg2+ inhibited approximately 80% enzyme activity of all NAD(P)H-nitroreductase, and the enzyme activities were decreased about 30-40% inhibition in the presence of Mn2+ or Ca2+. However, Fe3+ showed stimulatory effect on the enzyme activity. The molecular weights of NAD(P)H-nitroreductase (fractions I, II & III) were measured about 27 kDa on the SDS-PAGE.

Genetic Environments of Dongwon Au-Ag-bearing Hydrothermal Vein Deposit (동원 함 금-은 열수 맥상광상의 생성환경)

  • Lee, Sunjin;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.753-765
    • /
    • 2021
  • The Dongwon Au-Ag deposit is located within the Paleozoic Taebaeksan province, Okcheon belt. Mineral paragenesis can be divided into two stages (stage I, ore-bearing quartz veins; stage II, barren carbonate veins) by major tectonic fracturing. Stage I, at which the precipitation of major ore minerals occurred, is further divided into three substages(early, middle and late) with paragenetic time based on minor fractures and discernible mineral assemblages: early, marked by deposition of pyrite with minor magnetite, pyrrhotite and arsenopyrite; middle, characterized by introduction of electrum and base-metal sulfides with minor sulfosalts; late, marked by argentite, Cu-As (and/or Sb) and Ag-Sb sulfosalts with base-metal sulfides. Fluid inclusion data show that stage I ore mineralization was deposited between initial high temperatures (≥430℃) and later lower temperatures (≤230℃) from fluids with salinities between 6.0 to 0.4 wt. percent equiv. NaCl. The relationship of salinity and homogenization temperature suggest that ore mineralization at Dongwon was deposited mainly due to fluid boiling, cooling and dilution via influx of cooler, more dilute meteoric waters. Changes in stage I vein mineralogy reflect decreasing temperature and fugacity of sulfur by evolution of the Dongwon hydrothermal system with increasing paragenetic time. The Dongwon deposit may represents a Korean-type and/or Au-Ag type mesothermal/epithermal gold-silver deposit.

Purification and Characterization of Thermotolerable Alkaline Protease by Alkalophilic Bacillus sp. No. 8-16 (알칼리성 Bacillus sp. No.8-16의 내열ㆍ알칼리성 단백질 분해효소의 정제와 특성)

  • Bae, Moo;Park, Pil-Yon
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.6
    • /
    • pp.545-551
    • /
    • 1989
  • Thermostable alkaline protease of alkalophilic Bacillus sp. No. 8-16 has been purified, and the properties of the enzyme investigated. The characteristic point of the organism used is especially good growth in alkaline and thermal condition. The alkaline protease of the strain No. 8-16 was purified from crude enzyme by acetone precipitation, CM-cellulose ion exchange chromatography, Sephadex G-100 and Sephadex G-75 gel filtration. Through the series of chromatograpies, the enzyme was purified to homogeneity with specific activity of 37 fold higher than that of the crude broth. Characteristics of the purified enzyme were as follow; $K_m$ value for the enzyme was 1.3 mg/ml, the alkaline protease showed a maximal activity at 7$0^{\circ}C$ and from the pH 6.0 through 12.0, and stable for 1 hr. at 6$0^{\circ}C$. The moleclar weight of the enzyme was estimated to be 33,000 by Sephadex G-100 gel filtration. The activity of the alkaline protease was inhibited by iodoacetic acid and Ag$^+$, Hg$^+$, PMSF (phenylmethylsulfonyl fluoride), and activated by $Ca^{2+}$ and Mn$^{2+}$.

  • PDF

Purification and Properties of Alcohol Oxidase Produced by Hnasenula sp. MS-364 (Hansenula sp. MS-364가 생산하는 Alcohol Oxidase 의 정제 및 성질)

  • 김병호;김형만;권태종
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.1
    • /
    • pp.60-67
    • /
    • 1995
  • Methanol assimilating yeast, Hansenula sp. MS-364 that has high productivity with methanol as carbon and energy source has been preserved at dept. of Microbiological engineering. Purification and properties of alcohol oxidase (E.C.1.1.3.13: oxygen oxidoreductase) were investigated in the methanol assimilating yeast, Hansenula sp. MS-364. Alcohol oxidase is related to the catalytic reaction that degrades alcohol to aldehyde and peroxide. The methanol oxidizing enzyme was purified by ammonium sulfate precipitation, DEAE-Sephadex A-50 chromatography and gel filtration on Sepharose 6B from cell-free extract. The purified enzyme preparation gave a single band in the sodium dodesyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weight of the enzyme was calculated to be about 576,000 and molecular weight of subunit was also calculated to be 72,000. The optimal pH and temperature of the enzyme reaction were pH 7.5 and 37$\circ$C, respectively. The enzyme was unstable in acidic pH and higher temperature. The enzyme was not specific for methanol and also oxidized lower primary alcohols. The Km value for methanol was 2.5 mM and that for ethanol was 1.66 mM. The enzyme was heavily inhibited by metal ions such as Hg$^{2+}$, Ag$^{2+}$, Cu$^{2+}$. The high concentration of EDTA and sulfhydryl reagents strongly inhibited the enzyme activity. The component of coenzyme was determined to flavin adenine dinucleotide.

  • PDF

Purification and Characterization of Carboxymethyl-cellulase Produced by Bacillus sp. KD1014

  • Lee, Kyung-Dong;Kim, Jungho;Kim, Hoon
    • Journal of Applied Biological Chemistry
    • /
    • v.42 no.3
    • /
    • pp.107-112
    • /
    • 1999
  • A carboxymethyl-cellulase (CMCase) was purified from the culture supernatant of Bacillus sp. KD1014 by ultrafiltration, ammonium sulfate precipitation, and a series of chromatography on QAE-Sephadex A-50, hydroxylapatite and Sephadex G-75. The purified CMCase was a single protein of 32 kDa, showed an optimum activity at $60^{\circ}C$ and pH 6.0, and had a half-life of 23 min at $70^{\circ}C$. The enzyme activity was not influenced by metal ions such as $Mg^{2+},\;Fe^{3+},\;K^+,\;Zn^{2+}$, and $Cu^{2+}$ at a concentration of 1.0 mM, partially inhibited by $Mn^{2+}$ and $Ag^+$, and significantly inhibited by pentachlorophenol (PCP). The purified enzyme showed a 3.9-times higher activity on lichenan than on CMC, but hardly cleaved xylan, starch, avicel, laminarin, filter paper and levan. The results of activity staining of the purified enzyme separated by native and denaturing gel electrophoresis suggested that the CMCase might exist in dimeric, oligomeric or aggregated form as well as in monomeric form. The enzymatic cleavage products from cellotetraose indicated that the CMCase possessed transglycosylation activity.

  • PDF