• 제목/요약/키워드: Ag/$Al_2O_3$ Catalysts

검색결과 13건 처리시간 0.029초

K and Cs Doped Ag/Al2O3 Catalyst for Selective Catalytic Reduction of NOx by Methane

  • Rao, Komateedi N.;Yu, Chang-Yong;Lack, Choi-Hee;Ha, Heon-Phil
    • 한국분말재료학회지
    • /
    • 제18권6호
    • /
    • pp.510-516
    • /
    • 2011
  • In the present study, potassium and caesium doped Ag/$Al_2O_3$ catalysts were synthesized by simple wet impregnation method and evaluated for selective catalytic reduction (SCR) of NOx using methane. TEM analysis and diffraction patterns demonstrated the finely dispersed Ag particles. BET surface measurements reveal that the prepared materials have moderate to high surface area and the metal amount found from ICP analysis was well matching with the theoretical loadings. The synthesized K-Ag/$Al_2O_3$ and Cs-Ag/$Al_2O_3$ catalysts exhibited a promotional effect on deNOx activity in the presence of $SO_2$ and $H_2O$. The long-term isothermal studies at $550^{\circ}C$ under oxygen rich condition showed the superior catalytic properties of the both alkali promoted samples. The crucial catalytic properties of materials are attributed to NO adsorption properties detected by the NO TPD.

Ag-V/γ-Al2O3 촉매상에서 탄화수소-Selective Catalytic Reduction에 의한 질소산화물 저감 (DeNOx by Hydrocarbon-Selective Catalytic Reduction on Ag-V/γ-Al2O3 Catalyst)

  • 김문찬;이철규
    • 공업화학
    • /
    • 제16권3호
    • /
    • pp.328-336
    • /
    • 2005
  • 본 연구에서는 배출가스 중에 포함된 NO를 비선택적 촉매환원법으로 환원시켜 제거하기 위하여 Ag와 V의 함량을 여러 가지로 달리하여 ${\gamma}-Al_2O_3$에 담지한 촉매를 제조하였고, 제조한 촉매에 대하여 온도, 산소농도, 아황산가스농도의 변화에 따른 $NO_x$의 전환율에 대하여 연구하였다. 또한 제조한 촉매의 물성분석을 통하여 촉매의 상태와 $NO_x$의 전환율과의 관계를 알아보았다. $AgV/{\gamma}-Al_2O_3$ 촉매의 경우에는 고온에서는 $Ag/{\gamma}-Al_2O_3$ 촉매보다 낮은 $NO_x$ 전환율을 나타내는 반면에 저온에서는$Ag/{\gamma}-Al_2O_3$ 촉매보다 높은 $NO_x$ 전환율을 나타내었고, 반응가스 중에 $SO_2$가 함유되어 있어도 $NO_x$의 전환율이 낮아지지 않았다. 반응실험 전 후의 촉매에 대하여 X-ray Diffraction, X-ray Photo electron Spectroscopy, Temperature Programmed Reduction, Ultraviolet-Visible Diffuse Reflectance Spectroscopy 등의 분석결과와 반응실험 결과를 비교하여 볼 때 V가 포함됨으로 인하여 Ag의 산화상태가 잘 유지되지 못하여 고온에서는 $NO_x$ 전환율이 낮아지며, $300^{\circ}C$ 이하의 저온에서는 V의 촉매작용으로 인하여 $NO_x$ 전환율이 높아진 것으로 나타났다.

Ag/γ-Al2O3 촉매상에서 탄화수소-SCR(Selective Catalytic Reduction) 연구 (A study of hydrocarbon SCR(selective catalytic reduction) on Ag/γ-Al2O3 catalyst)

  • 김문찬;이철규
    • 분석과학
    • /
    • 제18권2호
    • /
    • pp.139-146
    • /
    • 2005
  • 본 연구에서는 자동차의 배출가스중에 포함된 NO를 비선택적 촉매환원법으로 환원시켜 제거하기 위하여 Ag의 함량을 여러 가지로 달리하여 ${\gamma}-Al_2O_3$에 담지한 촉매를 제조하였고, 제조한 촉매에 대하여 온도, 산소농도, 아황산가스농도의 변화에 따른 $NO_x$의 전환율에 대하여 연구하였다. 또한 제조한 촉매의 물성분석을 통하여 촉매의 상태와 $NO_x$의 전환율과의 관계를 알아보았다. 제조한 각각의 촉매에 대하여 반응조건을 여러 가지로 달리하여 반응실험을 한 결과 $Ag/{\gamma}-Al_2O_3$ 촉매는 Ag의 함량이 2 wt%일 때, 그리고 반응온도가 약 $450^{\circ}C$일 때 가장 높은 $NO_x$ 전환율을 나타냈다. 반응실험 전 후의 촉매에 대하여 X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Temperature Programmed Reduction (TPR), Ultraviolet-Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS)등의 분석 결과와 반응실험 결과를 비교하여 볼 때 Ag의 산화상태가 잘 유지되지 못하여 고온에서는 $NO_x$ 전환율이 낮아지는 것으로 나타났다.

Ag-Cu/$Al_2O_3$ 복합촉매를 이용한 저온에서의 $NH_3$ 산화 ($NH_3$ oxidation using Ag-Cu/$Al_2O_3$ composite catalyst at low temperature)

  • 임윤희;이주열;박병현
    • 한국응용과학기술학회지
    • /
    • 제31권2호
    • /
    • pp.313-319
    • /
    • 2014
  • This study was performed to obtain high conversion efficiency of $NH_3$ and minimize generation of nitrogen oxides using metal-supported catalyst with Ag : Cu ratio. Through structural analysis of the prepared catalyst with Ag : Cu ratio ((10-x)Ag-xCu ($0{\leq}x{\leq}6$)), it was confirmed that the specific surface area was decrease with increasing metal content. A prepared catalysts showed Type II adsorption isotherms regardless of the ratio Ag : Cu of metal content, and crystalline phase of $Ag_2O$, CuO and $CuAl_2O$ was observed by XRD analysis. In the low temperature($150{\sim}200^{\circ}C$), a conversion efficiency of AC_10 recorded the highest(98%), whereas AC_5 (Ag : Cu = 5 : 5) also showed good conversion efficiency(93.8%). However, in the high temperature range, the amounts of by-products(NO, $NO_2$) formed with AC_5 was lower than that of AC_10. From these results, It is concluded that AC_5 is more environmentally and economically suitable.

플라즈마 충진 촉매 시스템을 이용한 에틸렌 저감 연구 (Decomposition of Ethylene using a Hybrid Catalyst-packed Bed Plasma Reactor System)

  • 이상백;조진오;장동룡;목영선
    • 한국대기환경학회지
    • /
    • 제30권6호
    • /
    • pp.577-585
    • /
    • 2014
  • A series of experiments using atmospheric-pressure non-thermal plasma coupled with transition metal catalysts were performed to remove ethylene from agricultural storage facilities. The non-thermal plasma was created by dielectric barrier discharge, which was in direct contact with the catalyst pellets. The transition metals such as Ag and $V_2O_5$ were supported on ${\gamma}-Al_2O_3$. The effect of catalyst type, specific input energy (SIE) and oxygen content on the removal of ethylene was examined to understand the behavior of the hybrid plasma-catalytic reactor system. With the other parameters kept constant, the plasma-catalytic activity for the removal of ethylene was in order of $V_2O_5/{\gamma}-Al_2O_3$ > $Ag/{\gamma}-Al_2O_3$ > ${\gamma}-Al_2O_3$ from high to low. Interestingly, the rate of plasma-catalytic ozone generation was in order of $V_2O_5/{\gamma}-Al_2O_3$ > ${\gamma}-Al_2O_3$ > $Ag/{\gamma}-Al_2O_3$, implying that the catalyst activation mechanisms by plasma are different for different catalysts. The results obtained by varying the oxygen content indicated that nitrogen-derived reactive species dominated the removal of ethylene under oxygen-lean condition, while ozone and oxygen atoms were mainly involved in the removal under oxygen-rich condition. When the plasma was coupled with $V_2O_5/{\gamma}-Al_2O_3$, nearly complete removal of ethylene was achieved at oxygen contents higher than 5% by volume (inlet ethylene: 250 ppm; gas flow rate: $1.0Lmin^{-1}$; SIE: ${\sim}355JL^{-1}$).

저온플라즈마 구동 촉매 반응기를 이용한 벤젠과 톨루엔의 처리 (Nonthermal Plasma-Driven Catalysis of Benzene and Toluene)

  • 김현하;오가타 아쯔시;후타무라 시게루
    • 한국대기환경학회지
    • /
    • 제22권1호
    • /
    • pp.43-51
    • /
    • 2006
  • Nonthermal plasma-driven catalysis (PDC) was investigated for the decomposition of benzene and toluene as model compounds of volatile organic compounds (VOCs) at atmospheric pressure and low temperature. Two types of catalysts Ag/$TiO_{2}$ and Pt/$\gamma-Al_{2}O_{3}$ were tested in this study. The amount of catalysts packed in the PDC reactor did not influence on the decomposition efficiency of benzene. The type of catalysts also had no influence on the decomposition efficiency of toluene and carbon balance. The Ag/$TiO_{2}$ catalyst showed constant $CO_{2}$ selectivity of about $73\%$ regardless of the specific input energy. However, the selectivity of $CO_{2}$ was greatly enhanced with the Pt/$\gamma-Al_{2}O_{3}$ catalysts, and reached $97\%$ at 205 J/L. Two test runs with 20 fold difference in the gas flow clearly indicated that lab-scale data can be successfully applied for the scaling-up of PDC system.

촉매-플라즈마 반응 시스템을 이용한 황화수소의 처리특성 연구 (Characteristics of Hydrogen Sulfide Removal by a Catalyst-assisted Plasma System)

  • 이정근;김혁규;봉춘근;박성진;이명화;황의현;김종호
    • 한국대기환경학회지
    • /
    • 제27권4호
    • /
    • pp.379-386
    • /
    • 2011
  • Catalyst-assisted plasma system with a DBD (Dielectric Barrier Discharge) reactor was used to remove hydrogen sulfide, which is one of the odorous species in this study. The ${\gamma}-Al_2O_3$ and ${\beta}$-Zeolite catalysts impregnated by Ag, Cu and Mn species were employed as catalysts and their $H_2S$ removal characteristics under plasma irradiation were investigated. From the experimental study, we found that the $H_2S$ removal efficiency increases with decreasing space velocity in the system and increasing specific input energy. Furthermore, ${\beta}$-Zeolite catalysts are efficient to remove $H_2S$ than ${\gamma}-Al_2O_3$ catalysts. Especially, the catalysts impregnated by Ag have higher removal efficiency than other catalysts (Cu, Mn).

메탄에 의한 Ag/Al2O3 촉매의 선택적 탈질 환원촉매반응에서 탈질전환율에 미치는 황화물 형성의 영향과 Mg첨가 효과 (The Effects of Sulfate Formation and Mg Addition on the Selective Catalytic Reduction of NOx with CH4 on Ag/Al2O3 Catalysts)

  • 최희락;유창용;하헌필
    • 한국분말재료학회지
    • /
    • 제18권2호
    • /
    • pp.159-167
    • /
    • 2011
  • The influence of sulfate on the selective catalytic reduction of $NO_x$ on the Ag/$Al_2O_3$ catalyst was studied when $CH_4$ was used as a reducing agent. Various preparation methods influenced differently on the $deNO_x$ activity. Among the methods, cogelation precipitation gave best activity. When sulfates were formed on the surfaces of samples prepared by impregnated and deposition precipitation, $deNO_x$ activity was enhanced as long as suitable forming condition is satisfied. The major sulfate formed in Ag/$Al_2O_3$ catalyst was the aluminum sulfate and it seems that this sulfate acted as a promoter. When Mg was added to the Ag/$Al_2O_3$ catalyst it promoted $deNO_x$ activity at high temperature. Intentionally added sulfate also enhanced $deNO_x$ activity, when their amount was confined less than 3 wt%.

플라즈마/촉매 공정을 이용한 n-헵테인과 일산화탄소 동시제거 (Combined Removal of n-heptane and CO using Plasma-catalytic Process)

  • 이상백;조진오;목영선
    • 한국가스학회지
    • /
    • 제20권2호
    • /
    • pp.1-9
    • /
    • 2016
  • 본 연구는 플라즈마/촉매 공정을 이용하여 n-헵테인과 일산화탄소의 동시제거에 대해 조사하였다. n-헵테인과 일산화탄소의 분해특성을 파악하기 위해 플라즈마/촉매 공정과 촉매공정의 분해효율을 비교하였고, 촉매의 종류, 온도, 전력 등을 변화시켜 실험을 진행하였다. n-헵테인의 분해효율은 반응기 내부의 온도보다는 에너지밀도에 더 영향을 많이 받는 것으로 확인되었으며, 일산화탄소는 에너지밀도와 반응기 내부 온도 모두의 영향을 받는 것으로 나타났다. 촉매의 종류를 달리하며 n-헵테인의 분해효율을 조사한 결과 $Pd/{\gamma}-Al_2O_3$ > $Ru/{\gamma}-Al_2O_3{\approx}Ag/{\gamma}-Al_2O_3$순으로 나타났다. 특히, $Pd/{\gamma}-Al_2O_3$를 사용한 경우 n-헵테인 분해 과정에서 일산화탄소가 거의 발생하지 않았으며, $CO_2$ 선택도가 100%에 가까웠다. 일산화탄소 분해효율은 $Pd/{\gamma}-Al_2O_3$ > $Ru/{\gamma}-Al_2O_3$ > $Ag/{\gamma}-Al_2O_3$ 순으로 나타났으며, $180^{\circ}C$이하의 온도에서는 플라즈마/촉매 공정의 효율이 높고, $180^{\circ}C$이상에서는 촉매 공정의 분해효율이 높았다.

Doping a metal (Ag, Al, Mn, Ni and Zn) on TiO2 nanotubes and its effect on Rhodamine B photocatalytic oxidation

  • Gao, Xinghua;Zhou, Beihai;Yuan, Rongfang
    • Environmental Engineering Research
    • /
    • 제20권4호
    • /
    • pp.329-335
    • /
    • 2015
  • The effects of ion-doping on $TiO_2$ nanotubes were investigated to obtain the optimal catalyst for the effective decomposition of Rhodamine B (RB) through UV photocatalytic oxidation process. Changing the calcination temperature, which changed the weight fractions of the anatase phase, the average crystallite sizes, the BET surface area, and the energy band gap of the catalyst, affected the photocatalytic activity of the catalyst. The ionic radius, valence state, and configuration of the dopant also affected the photocatalytic activity. The photocatalytic activities of the catalysts on RB removal increased when $Ag^+$, $Al^{3+}$ and $Zn^{2+}$ were doped into the $TiO_2$ nanotubes, whereas such activities decreased as a result of $Mn^{2+}$ or $Ni^{2+}$ doping. In the presence of $Zn^{2+}$-doped $TiO_2$ nanotubes calcined at $550^{\circ}C$, the removal efficiency of RB within 50 min was 98.7%.