• Title/Summary/Keyword: Ag+ solution

Search Result 664, Processing Time 0.019 seconds

Radioimmunoassay Reagent Survey and Evaluation (검사별 radioimmunoassay시약 조사 및 비교실험)

  • Kim, Ji-Na;An, Jae-seok;Jeon, Young-woo;Yoon, Sang-hyuk;Kim, Yoon-cheol
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.25 no.1
    • /
    • pp.34-40
    • /
    • 2021
  • Purpose If a new test is introduced or reagents are changed in the laboratory of a medical institution, the characteristics of the test should be analyzed according to the procedure and the assessment of reagents should be made. However, several necessary conditions must be met to perform all required comparative evaluations, first enough samples should be prepared for each test, and secondly, various reagents applicable to the comparative evaluations must be supplied. Even if enough comparative evaluations have been done, there is a limit to the fact that the data variation for the new reagent represents the overall patient data variation, The fact puts a burden on the laboratory to the change the reagent. Due to these various difficulties, reagent changes in the laboratory are limited. In order to introduce a competitive bid, the institute conducted a full investigation of Radioimmunoassay(RIA) reagents for each test and established the range of reagents available in the laboratory through comparative evaluations. We wanted to share this process. Materials and Methods There are 20 items of tests conducted in our laboratory except for consignment tests. For each test, RIA reagents that can be used were fully investigated with the reference to external quality control report. and the manuals for each reagent were obtained. Each reagent was checked for the manual to check the test method, Incubation time, sample volume needed for the test. After that, the primary selection was made according to whether it was available in this laboratory. The primary selected reagents were supplied with 2kits based on 100tests, and the data correlation test, sensitivity measurement, recovery rate measurement, and dilution test were conducted. The secondary selection was performed according to the results of the comparative evaluation. The reagents that passed the primary and secondary selections were submitted to the competitive bidding list. In the case of reagent is designated as a singular, we submitted a explanatory statement with the data obtained during the primary and secondary selection processes. Results Excluded from the primary selection was the case where TAT was expected to be delayed at the moment, and it was impossible to apply to our equipment due to the large volume of reagents used during the test. In the primary selection, there were five items which only one reagent was available.(squamous cell carcinoma Ag(SCC Ag), β-human chorionic gonadotropin(β-HCG), vitamin B12, folate, free testosterone), two reagents were available(CA19-9, CA125, CA72-4, ferritin, thyroglobulin antibody(TG Ab), microsomal antibody(Mic Ab), thyroid stimulating hormone-receptor-antibody(TSH-R-Ab), calcitonin), three reagents were available (triiodothyronine(T3), Tree T3, Free T4, TSH, intact parathyroid hormone(intact PTH)) and four reagents were available are carcinoembryonic antigen(CEA), TG. In the secondary selection, there were eight items which only one reagent was available.(ferritin, TG, CA19-9, SCC, β-HCG, vitaminB12, folate, free testosterone), two reagents were available(TG Ab, Mic Ab, TSH-R-Ab, CA125, CA72-4, intact PTH, calcitonin), three reagents were available(T3, Tree T3, Free T4, TSH, CEA). Reasons excluded from the secondary selection were the lack of reagent supply for comparative evaluations, the problems with data reproducibility, and the inability to accept data variations. The most problematic part of comparative evaluations was sample collection. It didn't matter if the number of samples requested was large and the capacity needed for the test was small. It was difficult to collect various concentration samples in the case of a small number of tests(100 cases per month or less), and it was difficult to conduct a recovery rate test in the case of a relatively large volume of samples required for a single test(more than 100 uL). In addition, the lack of dilution solution or standard zero material for sensitivity measurement or dilution tests was one of the problems. Conclusion Comparative evaluation for changing test reagents require appropriate preparation time to collect diverse and sufficient samples. In addition, setting the total sample volume and reagent volume range required for comparative evaluations, depending on the sample volume and reagent volume required for one test, will reduce the burden of sample collection and planning for each comparative evaluation.

Effect of a Combined Treatment with Uniconazole, Silver Thiosulfate on Reduction of Ozone Injury in Tomato Plant (Uniconazole 과 Silver Thiosulfate 의 복합처리가 토마토의 오존피해경감에 미치는 효과)

  • Ku, Ja-Hyeong;Won, Dong-Chan;Kim, Tae-Il;Krizek, Donld T.;Mirecki, Roman M.
    • Korean Journal of Environmental Agriculture
    • /
    • v.11 no.1
    • /
    • pp.50-58
    • /
    • 1992
  • Studies were conducted to determine the combined effect of uniconazole [(E) -1-(4-chlorophenyl)-4, 4-demethyl 2-(1,2,4 triazol-1-yl)-1-penten-3-ol] and silver thiosulfate $[Ag {(S_2O_3)}^3\;_2-]$ (STS) on reduction of ozone injury in tomato plants(Lycopersicon esculentum Mill. 'Pink Glory'). Plants were given a 50ml soil drench of uniconazole at concentrations of 0, 0.001, 0.01 and 0.1 mg/pot at the stage of emerging 4th leaf. Two days prior to ozone fumigation, STS solution contained 0.05% Tween-20 was also sprayed at concentrations of 0, 0.3 and 0.6 mM. Uniconazole at 0.01 mg/pot and STS at 0.6 mM were effective in providing protection against ozone exposure(20h at 0.2ppm) without severe retardation of plant height and chemical phytotoxicity, respectively. Combined treatment with uniconazole, STS significantly reduced ozone injury at the lower concentration than a single treatment with uniconazole or STS. Uniconazole treatment reduced plant height, stem elongation and transpiration rate on a whole plant level and increased chlorophyll concentration. STS did not give any effect on plant growth and chlorophyll content but increased transpiration rate in non-ozone-fumigated plants. Ethylene production in the leaves of ozone-fumigated plants was decreased by uniconazole and STS pretreatment, but there was no protective effect on epinasty of leaves in uniconazole-treated plants. STS increased ethylene production in non-ozone-fumigated plants, but it significantly reduced the degree of epinasty and defoliation of cotyledons when plants were exposed to ozone. Uniconazole slightly increased superoxide dismutase and peroxidase activities. But STS showed little or no effects on such free radical scavengers. Day of flowering after seeding was shortened and percentages of fruit set were increased by uniconazole treatment. STS was highly effective on protecting reduction of fruit set resulting from ozone fumigation. These results suggest that combined use of uniconazole and STS should provide miximum protection against ozone injury without growth retardation resulting in yield loss.

  • PDF

A Study on the Precise End-Point Detection in Titration by Using the Phase Angle Measurements (위상각 측정에 의한 적정의 정확한 종말점 검출법에 관한 연구)

  • Park, Byung-Bin;Shin, Ho-Sang;Lee, Han-Hyoung
    • Analytical Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.290-298
    • /
    • 1999
  • A study on the application of impedance phase angle for redox titration, acid-base titration, chelate titration and precipitation titration has been carried out. A constant alternating current was passed between two platinum electrodes. One of them was a polarizable micro-electrode of $0.1cm^2$ or $0.026cm^2$ surface area and the other a non-polarizable large electrode of $1cm^2$ surface area dipped in the solution to be titrated. The impedance and the phase angle of the titration cell were measured with lock-in amplifier to obtain well behaved titration curve respectively. In titration of oxalic acid vs. potassium permanganate, the end-point was obtained successfully from the phase angle titration curve. In this experiment, the concentration of 0.0005 M to 0.05 M, the current of $50{\mu}A$ and the frequency of near 50 Hz were used. In titration of phosphoric acid vs. sodium hydroxide, the first end-point was obtained successfully on the optimum experimental condition of 0.001 M concentration, $50{\mu}A$ current and 25~97 Hz frequency. However, the end-point in titration of cupric sulfate vs. disodium-EDTA couldn't be obtained clearly. The end-point was obtained with the out-of-phase impedance curve on the experimental condition of 0.01 M concentration, $100{\mu}A$ current, 5~35 Hz frequency range. In titration of sodium chloride vs. silver nitrate, the end-point was obtained successfully on the experimental condition of 0.1 M concentration, $100{\mu}A$ current and 5~47 Hz frequency range. This study showed that the impedance phase angle was applicable for the detection of the end-points in redox titration curve, acid-base titration curve, chelate titration curve and precipitation titration curve.

  • PDF

A Study on the Key Factors Affecting Big Data Use Intention of Agriculture Ventures in Terms of Technology, Organization and Environment: Focusing on Moderating Effect of Technical Field (농업벤처기업의 빅데이터 활용의도에 영향을 미치는 기술·조직·환경 관점의 핵심요인 연구: 기술분야의 조절효과를 중심으로)

  • Ahn, Mun Hyoung
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.16 no.6
    • /
    • pp.249-267
    • /
    • 2021
  • The use of big data accumulated along with the progress of digitalization is bringing disruptive innovation to the global agricultural industry. Recently, the government is establishing an agricultural big data platform and a support organization. However, in the domestic agricultural industry, the use of big data is insufficient except for some companies in the field of cultivation and growth. In this context, this study identifies factors affecting the intention to use big data in terms of technology, organization and environment, and also confirm the moderating effect of technical field, focusing on agricultural ventures which should be the main entities in creating innovation by using big data. Research data was obtained from 309 agricultural ventures supported by the A+ Center of FACT(Foundation of AgTech Commercialization and Transfer), and was analyzed using IBM SPSS 22.0. As a result, Among technical factors, relative advantage and compatibility were found to have a significant positive (+) effect. Among organizational factors, it was found that management support had a positive (+) effect and cost had a negative (-) effect. Among environmental factors, policy support were found to have a positive (+) effect. As a result of the verification of the moderating effect of technology field, it was found that firms other than cultivation had a moderating effect that alleviated the relationship between all variables other than relative advantage, compatibility, and competitor pressure and the intention to use big data. These results suggest the following implications. First, it is necessary to select a core business that will provide opportunities to generate new profits and improve operational efficiency to agricultural ventures through the use of big data, and to increase collaboration opportunities through policy. Second, it is necessary to provide a big data analysis solution that can overcome the difficulties of analysis due to the characteristics of the agricultural industry. Third, in small organizations such as agricultural ventures, the will of the top management to reorganize the organizational culture should be preceded by a high level of understanding on the use of big data. Fourth, it is important to discover and promote successful cases that can be benchmarked at the level of SMEs and venture companies. Fifth, it will be more effective to divide the priorities of core business and support business by agricultural venture technology sector. Finally, the limitations of this study and follow-up research tasks are presented.