• 제목/요약/키워드: Aftertreatment

검색결과 84건 처리시간 0.023초

밤의 외피에서 추출한 염료를 이용한 직물 염색 (Fabrics Dyeing using Natural Dyestuff Manufactured from Chestnut Hulls)

  • 유혜자;이혜자;임재희
    • 한국의류학회지
    • /
    • 제22권4호
    • /
    • pp.469-476
    • /
    • 1998
  • The natural dyestuff(chestnut dye) was manufactured from chestnut hulls by boiling in 0.5 NaOH solution and powdering in freeze dryer. To investigate the dyeability and color fastness, cotton, wool, silk and nylon fabrics were dyed under several conditions using the manufactured chestnut dye. Dyeing operation was carried in acidic dyebath of pH 4-5 because the chestnut dye is anionic. Dyeabilities on wool, silk and nylon fabrics were good, especially nylon fabrics were dyed deeper than others. But dyeability on cotton fabrics was not good. All the dyed fabrics showed excellent color fastness to crocking. Color fastness to laupdering of them were moderate to good. Also light fastness of them were moderate to good except nylon. The light fastness of dyed nylon fabrics was as poor as grade 1. But they could be improved to grade 4 by aftertreatment with gallic acid.

  • PDF

대형경유차 저공해기술 적용에 따른 나노입자 배출특성 (Characteristics of Nano-particles Exhausted from Heavy-duty Diesel Vehicles with Low Emission Technology)

  • 임철수;류정호;엄명도;황진우;김예은
    • 한국대기환경학회지
    • /
    • 제20권2호
    • /
    • pp.225-236
    • /
    • 2004
  • Diesel engines which emit a lot of PM and NOx have been known as a main air polluter. Especially, diesel particulate matters (OPM) including black smoke are hazardous air pollutants to human health and environment. The nations retaining advanced engine technologies have reinforced emission regulations. To meet these regulations diesel engine manufacturers have developed low-emission diesel engines, aftertreatment equipments, alternative fuel technologies and so on. In this study, particle number concentrations characteristics according to particle size and engine driving conditions were analyzed when these low-emission technologies were applied. There was a tendency of increasing particle number concentrations from heavy-duty diesel engines with increasing engine rpm and load rate. In the cases of COPF (Catalytic Diesel Particulate Filter), CNG (Compressed Natural Gas) engine and ULSD (Ultra Low Sulfur Diesel) more than 99% of particle number concentration were removed.

대형디젤기관에서 바이오디젤과 초저유황경유 사용에 의한 성능 및 배출가스에 미치는 영향에 관한 연구 (A Study on Performance and Exhaust Emission with Bio-Diesel and ULSD at Heavy-Duty Diesel Engine)

  • 박만재
    • 한국공작기계학회논문집
    • /
    • 제12권6호
    • /
    • pp.97-103
    • /
    • 2003
  • Currently, due to serious increase of pollution scones, lots of technology has been involved to reduce exhaust gas in diesel engine. But the amounts of exhaust gas can not be decreased somehow due to the increase of diesel vehicles. Moreover, emission standards of each counties are being stringent in advanced countries such as USA and Europe. In the near future, sulfur contents in fuel must be essentially reduced f3r health and environment because sulfur can basically reduce exhaust gas. Therefore, when will be applied to Bio-diesel and ULSD, they could reduce sulfur contents of fuel without aftertreatment and might conform the influence of engine performance, emission, smoke and fuel consumption.

확대관 형상에 따른 DPF 내의 유동특성 해석 (Numerical study on the Air Flow Characteristics inside a DPF with Diffuser Shape)

  • 임동렬;이상업;김민정;김숭기;김성규
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.796-802
    • /
    • 2005
  • Numerical analysis has been conducted for improving air flow characteristics in the exhaust aftertreatment system of diesel-fueled passenger cars by changing axial length and cone shape of a DPF diffuser. The results of air velocity and static pressure distributions along with air flow uniformity results suggest that a diffuser shape with 2D or 3D function type is better for air flow patterns in front of a DPF.

  • PDF

대형디젤기관에서 DOC에 의한 배출가스 저감에 관한 연구 (A study on Emission Reduction by DOC on Heavy Duty Diesel Engine)

  • 한영출;류정호;오용석
    • 한국자동차공학회논문집
    • /
    • 제7권5호
    • /
    • pp.16-21
    • /
    • 1999
  • The diesel vehicle is relatively superior to gasoline vehicle on the fuel consumption, durability and combustion efficiency. However, exhaust emission from diesel vehicle are known to be harmful to human health and environment. The treatment technologies for the diesel exhaust gases are classified as replacement of fuel, quality control of diesel fuel, improvement of engine and aftertreatment system. The most effective for the treatment technology is known to be aftertreatment system, and this research is continuously conducted by many groups. The DOC system has many advantages of reducing particulates and harmful gaseous substances such as CO. HC. Moreover, it is simple in device structure, relatively low cost, and easy to install witout retrofitting the vehicle. In this study, experiment were conducted to analyze the effects on factors of oxidation characteristics and conversion efficiency of DOC. In experiment, test was conducted to estimate engine emission in 11,000cc diesel engine which was equipped with DOC.

  • PDF

총괄 변수 모델을 이용한 DPF 재생 성능에 관한 연구 (A Study on the Regeneration Performance of DPF using Lumped Parameter Model)

  • 전문수
    • 융복합기술연구소 논문집
    • /
    • 제1권1호
    • /
    • pp.41-47
    • /
    • 2011
  • With the world-wide demand on the emission minimization, the needs on the diesel aftertreatment devices with high efficiency are also increasing. In order to effectively develop or design a high-performance diesel particulate filter, a clear understanding on the deposition and regeneration mechanism is required. In the present study, a theory on the lumped parameter model for wall-flow type diesel particulate filters is described focusing on the deposition efficiency, pressure drop inside the filter. The fourth order explicit Runge-Kutta method is utilized for the mass flow rate computation. Engine operation modes with controlled and uncontrolled regeneration options are selected. The computational lumped parameter model is validated by comparing the computed results with the measured data.

  • PDF

CFD를 활용한 DOC-DPF 조합의 유동 균질도 분석 (Flow Uniformity Analysis of DOC-DPF System using CFD)

  • 김태훈;박성욱
    • 한국분무공학회지
    • /
    • 제24권3호
    • /
    • pp.122-129
    • /
    • 2019
  • Flow uniformity in aftertreatment system is an important factor in determining uniform catalytic reaction and filtration. In this study, variety types of DOC-DPF system design were analyzed to increase flow uniformity. For this analysis, ANSYS Fluent was used with porous media setup for DOC and DPF. Turbulent flow was modeled by standard $k-{\varepsilon}$ model excepting porous media. Uniformity index was utilized to evaluate the flow uniformity quantitatively. Reference design showed low velocity region because two large vortex were generated before baffle. When radius of DOC-DPF system was increased, exhaust pressure acting on the inlet decreases and velocity distribution was shifted to one side. When inlet pipe was set to axial center of DOC-DPF system velocity distribution was symmetric. However, flow was not dissipated until the front end of DOC and showed higher uniformity index. When the volume of DOC was reduced while fixed volume of entire DOC-DPF system and baffle plate is located downstream of the DOC-DPF system, there was improvement in uniformity index.