• Title/Summary/Keyword: Affinity Maturation

Search Result 26, Processing Time 0.023 seconds

Mid-term (2009-2019) demographic dynamics of young beech forest in Albongbunji Basin, Ulleungdo, South Korea

  • Cho, Yong-Chan;Sim, Hyung Seok;Jung, Songhie;Kim, Han-Gyeoul;Kim, Jun-Soo;Bae, Kwan-Ho
    • Journal of Ecology and Environment
    • /
    • v.44 no.4
    • /
    • pp.241-255
    • /
    • 2020
  • Background: The stem exclusion stage is a stage of forest development that is important for understanding the subsequent understory reinitiation stage and maturation stage during which horizontal heterogeneity is formed. Over the past 11 years (2009-2019), we observed a deciduous broad-leaved forest in the Albongbunji Basin in Ulleungdo, South Korea in its stem exclusion stage, where Fagus engleriana (Engler's beech) is the dominant species, thereby analyzing the changes in the structure (density and size distributions), function (biomass and species richness), and demographics. Results: The mean stem density data presented a bell-shaped curve with initially increasing, peaking, and subsequently decreasing trends in stem density over time, and the mean biomass data showed a sigmoidal pattern indicating that the rate of biomass accumulation slowed over time. Changes in the density and biomass of Fagus engleriana showed a similar trend to the changes in density and biomass at the community level, which is indicative of the strong influence of this species on the changing patterns of forest structure and function. Around 2015, a shift between recruitment and mortality rates was observed. Deterministic processes were the predominant cause of tree mortality in our study; however, soil deposition that began in 2017 in some of the quadrats resulted in an increase in the contribution of stochastic processes (15% in 2019) to tree mortality. The development of horizontal heterogeneity was observed in forest gaps. Conclusions: Our observations showed a dramatic shift between the recruitment and mortality rates in the stem exclusion stage, and that disturbance increases the uncertainty in forest development increases. The minor changes in species composition are likely linked to regional species pool and the limited role of the life-history strategy of species such as shade tolerance and habitat affinity. Our midterm records of ecological succession exhibited detailed demographic dynamics and contributed to the improvement of an ecological perspective in the stem exclusion stage.

Germinal Center Formation Controlled by Balancing Between Follicular Helper T Cells and Follicular Regulatory T Cells (여포 보조 T세포와 여포 조절 T세포의 균형 및 종자중심 형성)

  • Park, Hong-Jai;Kim, Do-Hyun;Choi, Je-Min
    • Hanyang Medical Reviews
    • /
    • v.33 no.1
    • /
    • pp.10-16
    • /
    • 2013
  • Follicular helper T cells (Tfh) play a significant role in providing T cell help to B cells during the germinal center reaction, where somatic hypermutation, affinity maturation, isotype class switching, and the differentiation of memory B cells and long-lived plasma cells occur. Antigen-specific T cells with IL-6 and IL-21 upregulate CXCR5, which is required for the migration of T cells into B cell follicles, where these T cells mature into Tfh. The surface markers including PD-1, ICOS, and CD40L play a significant role in providing T cell help to B cells. The upregulation of transcription factor Bcl-6 induces the expression of CXCR5, which is an important factor for Tfh differentiation, by inhibiting the expression of other lineage-specific transcription factors such as T-bet, GATA3, and RORγt. Surprisingly, recent evidence suggests that CD4 T cells already committed to Th1, Th2, and Th17 cells obtain flexibility in their differentiation programs by downregulating T-bet, GATA3, and RORγt, upregulating Bcl-6 and thus convert into Tfh. Limiting the numbers of Tfh within germinal centers is important in the regulation of the autoantibody production that is central to autoimmune diseases. Recently, it was revealed that the germinal center reaction and the size of the Tfh population are also regulated by thymus-derived follicular regulatory T cells (Tfr) expressing CXCR5 and Foxp3. Dysregulation of Tfh appears to be a pathogenic cause of autoimmune disease suggesting that tight regulation of Tfh and germinal center reaction by Tfr is essential for maintaining immune tolerance. Therefore, the balance between Tfh and Tfr appears to be a critical peripheral tolerance mechanism that can inhibit autoimmune disorders.

Roles of the Insulin-like Growth Factor System in the Reproductive Function;Uterine Connection (Insulin-like Growth Factor Systems의 생식기능에서의 역할;자궁편)

  • Lee, Chul-Young
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.23 no.3
    • /
    • pp.247-268
    • /
    • 1996
  • It has been known for a long time that gonadotropins and steroid hormones play a pivotal role in a series of reproductive biological phenomena including the maturation of ovarian follicles and oocytes, ovulation and implantation, maintenance of pregnancy and fetal growth & development, parturition and mammary development and lactation. Recent investigations, however, have elucidated that in addition to these classic hormones, multiple growth factors also are involved in these phenomena. Most growth factors in reproductive organs mediate the actions of gonadotropins and steroid hormones or synergize with them in an autocrine/paracrine manner. The insulin-like growth factor(IGF) system, which is one of the most actively investigated areas lately in the reproductive organs, has been found to have important roles in a wide gamut of reproductive phenomena. In the present communication, published literature pertaining to the intrauterine IGF system will be reviewed preceded by general information of the IGF system. The IGF family comprises of IGF-I & IGF-II ligands, two types of IGF receptors and six classes of IGF-binding proteins(IGFBPs) that are known to date. IGF-I and IGF-II peptides, which are structurally homologous to proinsulin, possess the insulin-like activity including the stimulatory effect of glucose and amino acid transport. Besides, IGFs as mitogens stimulate cell division, and also play a role in cellular differentiation and functions in a variety of cell lines. IGFs are expressed mainly in the liver and messenchymal cells, and act on almost all types of tissues in an autocrine/paracrine as well as endocrine mode. There are two types of IGF receptors. Type I IGF receptors, which are tyrosine kinase receptors having high-affinity for IGF-I and IGF-II, mediate almost all the IGF actions that are described above. Type II IGF receptors or IGF-II/mannose-6-phosphate receptors have two distinct binding sites; the IGF-II binding site exhibits a high affinity only for IGF-II. The principal role of the type II IGF receptor is to destroy IGF-II by targeting the ligand to the lysosome. IGFs in biological fluids are mostly bound to IGFBP. IGFBPs, in general, are IGF storage/carrier proteins or modulators of IGF actions; however, as for distinct roles for individual IGFBPs, only limited information is available. IGFBPs inhibit IGF actions under most in vitro situations, seemingly because affinities of IGFBPs for IGFs are greater than those of IGF receptors. How IGF is released from IGFBP to reach IGF receptors is not known; however, various IGFBP protease activities that are present in blood and interstitial fluids are believed to play an important role in the process of IGF release from the IGFBP. According to latest reports, there is evidence that under certain in vitro circumstances, IGFBP-1, -3, -5 have their own biological activities independent of the IGF. This may add another dimension of complexity of the already complicated IGF system. Messenger ribonucleic acids and proteins of the IGF family members are expressed in the uterine tissue and conceptus of the primates, rodents and farm animals to play important roles in growth and development of the uterus and fetus. Expression of the uterine IGF system is regulated by gonadal hormones and local regulatory substances with temporal and spatial specificities. Locally expressed IGFs and IGFBPs act on the uterine tissue in an autocrine/paracrine manner, or are secreted into the uterine lumen to participate in conceptus growth and development. Conceptus also expresses the IGF system beginning from the peri-implantation period. When an IGF family member is expressed in the conceptus, however, is determined by the presence or absence of maternally inherited mRNAs, genetic programming of the conceptus itself and an interaction with the maternal tissue. The site of IGF action also follows temporal (physiological status) and spatial specificities. These facts that expression of the IGF system is temporally and spatially regulated support indirectly a hypothesis that IGFs play a role in conceptus growth and development. Uterine and conceptus-derived IGFs stimulate cell division and differentiation, glucose and amino acid transport, general protein synthesis and the biosynthesis of mammotropic hormones including placental lactogen and prolactin, and also play a role in steroidogenesis. The suggested role for IGFs in conceptus growth and development has been proven by the result of IGF-I, IGF-II or IGF receptor gene disruption(targeting) of murine embryos by the homologous recombination technique. Mice carrying a null mutation for IGF-I and/or IGF-II or type I IGF receptor undergo delayed prenatal and postnatal growth and development with 30-60% normal weights at birth. Moreover, mice lacking the type I IGF receptor or IGF-I plus IGF-II die soon after birth. Intrauterine IGFBPs generally are believed to sequester IGF ligands within the uterus or to play a role of negative regulators of IGF actions by inhibiting IGF binding to cognate receptors. However, when it is taken into account that IGFBP-1 is expressed and secreted in primate uteri in amounts assessedly far exceeding those of local IGFs and that IGFBP-1 is one of the major secretory proteins of the primate decidua, the possibility that this IGFBP may have its own biological activity independent of IGF cannot be excluded. Evidently, elucidating the exact role of each IGFBP is an essential step into understanding the whole IGF system. As such, further research in this area is awaited with a lot of anticipation and attention.

  • PDF

Insights into the Role of Follicular Helper T Cells in Autoimmunity

  • Park, Hong-Jai;Kim, Do-Hyun;Lim, Sang-Ho;Kim, Won-Ju;Youn, Jeehee;Choi, Youn-Soo;Choi, Je-Min
    • IMMUNE NETWORK
    • /
    • v.14 no.1
    • /
    • pp.21-29
    • /
    • 2014
  • Follicular helper T ($T_{FH}$) cells are recently highlighted as their crucial role for humoral immunity to infection as well as their abnormal control to induce autoimmune disease. During an infection, na$\ddot{i}$ve T cells are differentiating into $T_{FH}$ cells which mediate memory B cells and long-lived plasma cells in germinal center (GC). $T_{FH}$ cells are characterized by their expression of master regulator, Bcl-6, and chemokine receptor, CXCR5, which are essential for the migration of T cells into the B cell follicle. Within the follicle, crosstalk occurs between B cells and $T_{FH}$ cells, leading to class switch recombination and affinity maturation. Various signaling molecules, including cytokines, surface molecules, and transcription factors are involved in $T_{FH}$ cell differentiation. IL-6 and IL-21 cytokine-mediated STAT signaling pathways, including STAT1 and STAT3, are crucial for inducing Bcl-6 expression and $T_{FH}$ cell differentiation. $T_{FH}$ cells express important surface molecules such as ICOS, PD-1, IL-21, BTLA, SAP and CD40L for mediating the interaction between T and B cells. Recently, two types of microRNA (miRNA) were found to be involved in the regulation of $T_{FH}$ cells. The miR-17-92 cluster induces Bcl-6 and $T_{FH}$ cell differentiation, whereas miR-10a negatively regulates Bcl-6 expression in T cells. In addition, follicular regulatory T ($T_{FR}$) cells are studied as thymus-derived $CXCR5^+PD-1^+Foxp3^+\;T_{reg}$ cells that play a significant role in limiting the GC response. Regulation of $T_{FH}$ cell differentiation and the GC reaction via miRNA and $T_{FR}$ cells could be important regulatory mechanisms for maintaining immune tolerance and preventing autoimmune diseases such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Here, we review recent studies on the various factors that affect $T_{FH}$ cell differentiation, and the role of $T_{FH}$ cells in autoimmune diseases.

Identification of Substrate Specificity Determinant of Achromobacter Protease I (API) and Catalytic Activity of Mutant D225E for Ornithine Substrate (Achromobacter Protease I (API)의 기질특이성 결정기의 동정과 변이체[D225E]의 Ornithine 기질에 대한 촉매활성)

  • Lim, Seong-Il;Kwon, Oh-Jin;Choi, Cheong
    • Applied Biological Chemistry
    • /
    • v.40 no.3
    • /
    • pp.189-195
    • /
    • 1997
  • The structural basis of Iysine specificity of Achromobacter protease I (API) was investigated by means of site-directed mutagenesis. The precursor protein in which Glu190, one of the two candidates for determining Iysine specificity, was substituted by glutamine, aspartic acid or leucine was processed autocatalytically to attaln full pretense activity with lysine specificity. The substitution of the other candidate, Asp225, for asparagine or leucine produced no mature active forms of pro-API. The precursor protein of the mutant D225E slowly matured autocatalytically. The lysylendopeptidase activity of the mature D225E was 0.25% of that of native API, and this reduced activity is mainly due to a decrease in the affinity of the enzyme for lysine. These results suggest that Asp225 plays a critical rol in restricted substrate specificity as a lysylendopeptidase. However, D225E exhibited no measurable activity for synthetic ornithine substrate. Since the hydroxyl group of Ser194 in this mutant retained essentially the same reactivity to DFP or PMSF as that in native API, it can be noted that a methylene unit longer side chain of residue 225 is not compensated by a methylene unit shorter side chain at subsite P1 in the bound substrate.

  • PDF

Autoradiographic Localization of Atdal Natriuretic Peptide Binding Sites in the Pig Ovary (돼지 난소 Atrial Natriuretic Peptide 결합 부위의 자가방사법에 의한 검증)

  • 김성주;김선희
    • The Korean Journal of Zoology
    • /
    • v.38 no.4
    • /
    • pp.523-530
    • /
    • 1995
  • Specific affinity binding sites for atrial natriuretic peptide (ANP) were Investigated in the pig ovarian tissues by in vitro autoradiographic techniques. In the pig ovary, the highest binding sites for 12514abeiled rANP(l~28) were localized in the granulosa cell layer of the forncles. The binding sies on theca layer of the ovarian follicles were mainly localized in the external layer, but none was observed In the Internal layer. In the corpus luteum, the binding site was not observed. The specific bindings of 200 pM of l2Sl4abelled rANP(l~28) to granulosa and theca externa layers were reversed completely by excess concentration (1 ~4) of unlabelled rANP(l~28) but not by 10 ~ of unrelated peptides, human angiotensin II and arginine vasopressin. The binding was also displaced by 1 ~ of desiGIn18, Ser19, Gly2O, leu21, Gly22I ANP(4~2g) (C- ANF) as a spedfic ligand of the ANP clearance receptor. Therefore these results indicate ~hat the biological and the clearance ANP receptors exist in the theca externa and granulosa layer of the pig ovary, and suggest that the ANP receptors may be related with the regulatory lundion of the ovarian follicular development including oocyte maturation.

  • PDF