• 제목/요약/키워드: Affine-SIFT

검색결과 20건 처리시간 0.028초

지역적 매칭쌍 특성에 기반한 고해상도영상의 자동기하보정 (Automatic Registration of High Resolution Satellite Images using Local Properties of Tie Points)

  • 한유경;번영기;최재완;한동엽;김용일
    • 한국측량학회지
    • /
    • 제28권3호
    • /
    • pp.353-359
    • /
    • 2010
  • 본 논문은 Scale Invariant Feature Transform(SIFT) 기술자를 이용한 매칭 방법을 개선하여 고해상도영상에서 보다 많은 매칭쌍(tie points)을 추출함으로써 고해상도영상 자동기하보정의 결과향상을 목적으로 한다. 이를 위해 기준(reference)영상과 대상(sensed)영상의 특징점(interest points)간의 위치관계를 추가적으로 이용하여 매칭쌍을 추출하였다. SIFT 기술자를 이용하여 어핀(affine)변환계수를 추정한 후, 이를 통해 대상영상의 특징점 좌표를 기준영상 좌표체계로 변환하였다. 변환된 대상영상의 특징점과 기준영상의 특징점간의 공간거리(spatial distance)정보를 이용하여 최종적으로 매칭쌍을 추출하였다. 추출된 매칭쌍으로 piecewise linear function을 구성하여 고해상도 영상간 자동기하보정을 수행하였다. 제안한 기법을 통하여, 기존 SIFT 기법에 의해 추출한 결과에 비해 영상 전역에 걸쳐 고르게 분포된 다수의 매칭쌍을 추출할 수 있었다.

SIFT를 이용한 위성사진의 정합기법 (A Scheme for Matching Satellite Images Using SIFT)

  • 강석천;황인택;최광남
    • 인터넷정보학회논문지
    • /
    • 제10권4호
    • /
    • pp.13-23
    • /
    • 2009
  • 본 논문에서 우리는 위성 영상에 대하여 객체를 지역화한 접근을 제안한다. 우리의 방법은 서술 벡터에 기반한 특징 정합 방법이다. 객체를 지역화하는 방법은 SIFT(Scale Invariant Feature Transform)를 적용시킨다. 먼저, 위성영상의 키포인트를 찾고, 키포인트의 서술 벡터를 일반화한다. 그리고 서술 벡터간에 유사성을 측정하여 키포인트를 매칭시킨다. 마지막으로, 키포인트의 인접 픽셀값에 가중치를 주어 객체에서 위치를 결정한다. SIFT를 이용한 이 실험은 다양한 스케일과 어파인 변환에 대해 좋은 결과를 산출하였다. 본 논문에서 제안된 방법은 구글 어스의 위성영상을 사용하였다.

  • PDF

건물의 높이 정보 분석을 위한 WorldView-2 스테레오 영상의 정합점 추출방법 평가 (Evaluation on Tie Point Extraction Methods of WorldView-2 Stereo Images to Analyze Height Information of Buildings)

  • 김예지;김용일
    • 한국측량학회지
    • /
    • 제33권5호
    • /
    • pp.407-414
    • /
    • 2015
  • 특징점은 주로 높이의 변화가 있는 위치에 존재하여 DSM 생성에 의미 있는 화소일 수 있으며, 정확하고 신뢰할 만한 정합 결과를 도출하는 중요한 역할을 한다. 이러한 특징점을 위성영상 내의 건물에서 추출하고 스테레오 영상 간의 정합을 수행하기 위해 사용자의 주관적인 분석을 통한 방법이 주로 쓰여 왔으나 경제적 및 시간적 비용이 드는 단점이 있다. 이러한 부분을 보완하기 위해 본 연구에서는 건물의 높이 정보를 추출하기 위해서 Harris-affine 특징점 추출기법과 SIFT 서술자를 사용한 스테레오 위성영상의 정합점 추출방법을 제시하였다. Harris-affine 추출기법으로 건물에 존재하는 특징점을 추출하고, 스케일 등의 영향이 적은 SIFT 서술자를 활용하여 효과적으로 정합점을 추출하였다. 또한, 탐색범위를 사용하고 영상 내 정합쌍의 각도를 고려하여 좀 더 효과적인 정합점 추출 방법을 제시하였다. 제안방법으로 추출된 정합점을 사용하여 영상 내에 존재하는 건물의 높이 정보를 실제로 분석하여 제안 방법이 수동 방법과 비교하여 2m 미만의 RMSE 값을 가지는 것을 확인하였다.

SIFT를 이용한 내시경 영상에서의 특징점 추출 (Feature Extraction for Endoscopic Image by using the Scale Invariant Feature Transform(SIFT))

  • 오장석;김호철;김형률;구자민;김민기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.6-8
    • /
    • 2005
  • Study that uses geometrical information in computer vision is lively. Problem that should be preceded is matching problem before studying. Feature point should be extracted for well matching. There are a lot of methods that extract feature point from former days are studied. Because problem does not exist algorithm that is applied for all images, it is a hot water. Specially, it is not easy to find feature point in endoscope image. The big problem can not decide easily a point that is predicted feature point as can know even if see endoscope image as eyes. Also, accuracy of matching problem can be decided after number of feature points is enough and also distributed on whole image. In this paper studied algorithm that can apply to endoscope image. SIFT method displayed excellent performance when compared with alternative way (Affine invariant point detector etc.) in general image but SIFT parameter that used in general image can't apply to endoscope image. The gual of this paper is abstraction of feature point on endoscope image that controlled by contrast threshold and curvature threshold among the parameters for applying SIFT method on endoscope image. Studied about method that feature points can have good distribution and control number of feature point than traditional alternative way by controlling the parameters on experiment result.

  • PDF

Improved Image Matching Method Based on Affine Transformation Using Nadir and Oblique-Looking Drone Imagery

  • Jang, Hyo Seon;Kim, Sang Kyun;Lee, Ji Sang;Yoo, Su Hong;Hong, Seung Hwan;Kim, Mi Kyeong;Sohn, Hong Gyoo
    • 한국측량학회지
    • /
    • 제38권5호
    • /
    • pp.477-486
    • /
    • 2020
  • Drone has been widely used for many applications ranging from amateur and leisure to professionals to get fast and accurate 3-D information of the surface of the interest. Most of commercial softwares developed for this purpose are performing automatic matching based on SIFT (Scale Invariant Feature Transform) or SURF (Speeded-Up Robust Features) using nadir-looking stereo image sets. Since, there are some situations where not only nadir and nadir-looking matching, but also nadir and oblique-looking matching is needed, the existing software for the latter case could not get good results. In this study, a matching experiment was performed to utilize images with differences in geometry. Nadir and oblique-looking images were acquired through drone for a total of 2 times. SIFT, SURF, which are feature point-based, and IMAS (Image Matching by Affine Simulation) matching techniques based on affine transformation were applied. The experiment was classified according to the identity of the geometry, and the presence or absence of a building was considered. Images with the same geometry could be matched through three matching techniques. However, for image sets with different geometry, only the IMAS method was successful with and without building areas. It was found that when performing matching for use of images with different geometry, the affine transformation-based matching technique should be applied.

A reliable quasi-dense corresponding points for structure from motion

  • Oh, Jangseok;Hong, Hyunggil;Cho, Yongjun;Yun, Haeyong;Seo, Kap-Ho;Kim, Hochul;Kim, Mingi;Lee, Onseok
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권9호
    • /
    • pp.3782-3796
    • /
    • 2020
  • A three-dimensional (3D) reconstruction is an important research area in computer vision. The ability to detect and match features across multiple views of a scene is a critical initial step. The tracking matrix W obtained from a 3D reconstruction can be applied to structure from motion (SFM) algorithms for 3D modeling. We often fail to generate an acceptable number of features when processing face or medical images because such images typically contain large homogeneous regions with minimal variation in intensity. In this study, we seek to locate sufficient matching points not only in general images but also in face and medical images, where it is difficult to determine the feature points. The algorithm is implemented on an adaptive threshold value, a scale invariant feature transform (SIFT), affine SIFT, speeded up robust features (SURF), and affine SURF. By applying the algorithm to face and general images and studying the geometric errors, we can achieve quasi-dense matching points that satisfy well-functioning geometric constraints. We also demonstrate a 3D reconstruction with a respectable performance by applying a column space fitting algorithm, which is an SFM algorithm.

단일 카메라를 이용한 이동 로봇의 실시간 위치 추정 및 지도 작성에 관한 연구 (A Study on Real-Time Localization and Map Building of Mobile Robot using Monocular Camera)

  • 정대섭;최종훈;장철웅;장문석;공정식;이응혁;심재홍
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.536-538
    • /
    • 2006
  • The most important factor of mobile robot is to build a map for surrounding environment and estimate its localization. This paper proposes a real-time localization and map building method through 3-D reconstruction using scale invariant feature from monocular camera. Mobile robot attached monocular camera looking wall extracts scale invariant features in each image using SIFT(Scale Invariant Feature Transform) as it follows wall. Matching is carried out by the extracted features and matching feature map that is transformed into absolute coordinates using 3-D reconstruction of point and geometrical analysis of surrounding environment build, and store it map database. After finished feature map building, the robot finds some points matched with previous feature map and find its pose by affine parameter in real time. Position error of the proposed method was maximum. 8cm and angle error was within $10^{\circ}$.

  • PDF

다중 기술자를 이용한 잘못된 특징점 정합 제거 (Filtering Feature Mismatches using Multiple Descriptors)

  • 김재영;전희성
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권1호
    • /
    • pp.23-30
    • /
    • 2014
  • 이미지 기술자(descriptor)를 이용한 정합은 최근까지 컴퓨터 비전과 패턴인식 분야에서 사용되고 있는 강력한 정합 방법이다. 그러나 3차원 시점이 변화되거나 밝기가 변화된 이미지, 반복된 패턴이 포함된 이미지 등에서 잘못된 정합들이 발생한다. 본 논문에서는 반복된 패턴이 포함되어 있는 이미지에서 잘못된 정합들이 많이 발생하는 문제점에 대해 기술하고 이를 분석하여 잘못된 정합들을 제거할 수 있는 방법을 제안한다. MDMF(Multiple Descriptors-based Mismatch Filtering) 방법은 각 특징점에 대해 인접한 여러 개의 특징점들의 기술자들을 사용하여 다중 기술자를 생성한 후 이를 활용하여 잘못된 정합들을 제거한다. 실험에서는 크기 변환, 회전 변환, 어파인 변환에 대해 기존 SIFT와 ASIFT의 정합율을 MDMF를 이용해 제거한 정합율과 비교하여 MDMF가 잘못된 정합을 성공적으로 제거할 수 있음을 보였다.

인공위성 영상의 객체인식을 위한 영상 특징 분석 (Feature-based Image Analysis for Object Recognition on Satellite Photograph)

  • 이석준;정순기
    • 한국HCI학회논문지
    • /
    • 제2권2호
    • /
    • pp.35-43
    • /
    • 2007
  • 본 논문은 특징검출(feature detection)과 특징해석(feature description) 기법을 이용하여, 영상 매칭 (matching)과 인식(recognition)에 필요한 다양한 파라미터의 변화에 따른 인식률의 차이를 분석하기 위한 실험 내용을 다룬다. 본 논문에서는 영상의 특징분석과 매칭프로세스를 위해, Lowe의 SIFT(Scale-Invariant Transform Feature)를 이용하며, 영상에서 나타나는 특징을 검출하고 해석하여 특징 데이터베이스로 구축한다. 특징 데이터베이스는 구글 어스를 통해 획득한 위성영상으로부터 50여개 건물에 대해 구축되는데, 이는 각 건물 영상으로부터 추출된 특징 점들의 좌표와 128차원의 벡터의 값으로 이루어진 특징 해석데이터로 저장된다. 구축된 데이터베이스는 각 건물에 대한 정보가 태그의 형식으로 함께 저장되는데, 이는 카메라로부터 획득한 입력영상과의 비교를 통해 입력영상이 가리키는 지역 내에 존재하는 건물에 대한 정보를 제공하는 역할을 한다. 실험은 영상 매칭과 인식과정에서 작용하는 내-외부적 요소들을 제시하고, 각 요소의 상태변화에 따라 인식률의 차이를 비교하는 방법으로 진행되었으며, 본 연구의 최종적인 시스템은 모바일기기의 카메라를 이용하여 카메라가 촬영하고 있는 지도상의 객체를 인식하고, 해당 객체에 대한 기본적인 정보를 제공할 수 있다.

  • PDF

Mean-Shift Blob Clustering and Tracking for Traffic Monitoring System

  • Choi, Jae-Young;Yang, Young-Kyu
    • 대한원격탐사학회지
    • /
    • 제24권3호
    • /
    • pp.235-243
    • /
    • 2008
  • Object tracking is a common vision task to detect and trace objects between consecutive frames. It is also important for a variety of applications such as surveillance, video based traffic monitoring system, and so on. An efficient moving vehicle clustering and tracking algorithm suitable for traffic monitoring system is proposed in this paper. First, automatic background extraction method is used to get a reliable background as a reference. The moving blob(object) is then separated from the background by mean shift method. Second, the scale invariant feature based method extracts the salient features from the clustered foreground blob. It is robust to change the illumination, scale, and affine shape. The simulation results on various road situations demonstrate good performance achieved by proposed method.