• Title/Summary/Keyword: Aerospace Vehicle

Search Result 1,051, Processing Time 0.022 seconds

KSLV-II Cost Estimate using TRANS COST 7.1 (TRANSCOST 7.1을 적용한 실용위성 발사체 비용추정)

  • Seo, Yun-Kyoung;Oh, Bum-Seok
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.119-125
    • /
    • 2007
  • Space launch vehicle development needs many kinds of technologies synthetically. Nowadays, KARI (Korea Aerospace Research Institute) has developed a space launch vehicle, KSLV-I (Korea Space Launch Vehicle-I), that is able to load with an 100kg payload. After that it plans to develop Korean Space Launch Vehicle. As space launch vehicle becomes more complicate and larger, it needs a scientific and analytic development cost estimation. In this paper a cost estimation for KSLV-II using TRANSCOST 7.1 was studied.

  • PDF

Performance Analysis of the GPS Antenna for Satellite Launch Vehicles under the Hot -Temperature Environment

  • Moon, Ji-Hyeon;Kwon, Byung-Moon;Choi, Hyung-Don
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.273-278
    • /
    • 2006
  • In order to use a GPS antenna for launch vehicles, it should be installed on the skin of the vehicle and be able to normally receive the live GPS signals during the vehicle's full flight mission. The GPS antenna on the surface of the launch vehicle is, however, exposed to higher temperature than inner equipments of the vehicle due to aerodynamic heating generated during the flight. Test specification of the GPS antenna for qualification of hot-temperature is determined to $+95^{\circ}C$ that is higher than inner components by $25^{\circ}C$. Test results in this paper show that the GPS antenna normally operates under the above environment.

  • PDF

Development of Flight Control System and Troubleshooting on Flight Test of a Tilt-Rotor Unmanned Aerial Vehicle

  • Kang, Youngshin;Park, Bum-Jin;Cho, Am;Yoo, Chang-Sun;Koo, Sam-Ok;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.120-131
    • /
    • 2016
  • The full results of troubleshooting process related to the flight control system of a tilt-rotor type UAV in the flight tests are described. Flight tests were conducted in helicopter, conversion, and airplane modes. The vehicle was flown using automatic functions, which include speed-hold, altitude-hold, heading-hold, guidance modes, as well as automatic take-off and landing. Many unexpected problems occurred during the envelope expansion tests which were mostly under those automatic functions. The anomalies in helicopter mode include vortex ring state (VRS), long delay in the automatic take-off, and the initial overshoot in the automatic landing. In contrast, the anomalies in conversion mode are untrimmed AOS oscillation and the calibration errors of the air data sensors. The problems of low damping in rotor speed and roll rate responses are found in airplane mode. Once all of the known problems had been solved, the vehicle in airplane mode gradually reached the maximum design speed of 440km/h at the operation altitude of 3km. This paper also presents a comprehensive detailing of the control systems of the tilt-rotor unmanned air vehicle (UAV).

Experimental Framework for Controller Design of a Rotorcraft Unmanned Aerial Vehicle Using Multi-Camera System

  • Oh, Hyon-Dong;Won, Dae-Yeon;Huh, Sung-Sik;Shim, David Hyun-Chul;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.2
    • /
    • pp.69-79
    • /
    • 2010
  • This paper describes the experimental framework for the control system design and validation of a rotorcraft unmanned aerial vehicle (UAV). Our approach follows the general procedure of nonlinear modeling, linear controller design, nonlinear simulation and flight test but uses an indoor-installed multi-camera system, which can provide full 6-degree of freedom (DOF) navigation information with high accuracy, to overcome the limitation of an outdoor flight experiment. In addition, a 3-DOF flying mill is used for the performance validation of the attitude control, which considers the characteristics of the multi-rotor type rotorcraft UAV. Our framework is applied to the design and mathematical modeling of the control system for a quad-rotor UAV, which was selected as the test-bed vehicle, and the controller design using the classical proportional-integral-derivative control method is explained. The experimental results showed that the proposed approach can be viewed as a successful tool in developing the controller of new rotorcraft UAVs with reduced cost and time.

Analytical fault tolerant navigation system for an aerospace launch vehicle using sliding mode observer

  • Hasani, Mahdi;Roshanian, Jafar;Khoshnooda, A. Majid
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.1
    • /
    • pp.53-64
    • /
    • 2017
  • Aerospace Launch Vehicles (ALV) are generally designed with high reliability to operate in complete security through fault avoidance practices. However, in spite of such precaution, fault occurring is inevitable. Hence, there is a requirement for on-board fault recovery without significant degradation in the ALV performance. The present study develops an advanced fault recovery strategy to improve the reliability of an Aerospace Launch Vehicle (ALV) navigation system. The proposed strategy contains fault detection features and can reconfigure the system against common faults in the ALV navigation system. For this purpose, fault recovery system is constructed to detect and reconfigure normal navigation faults based on the sliding mode observer (SMO) theory. In the face of pitch channel sensor failure, the original gyro faults are reconstructed using SMO theory and by correcting the faulty measurement, the pitch-rate gyroscope output is constructed to provide fault tolerant navigation solution. The novel aspect of the paper is employing SMO as an online tuning of analytical fault recovery solution against unforeseen variations due to its hardware/software property. In this regard, a nonlinear model of the ALV is simulated using specific navigation failures and the results verified the feasibility of the proposed system. Simulation results and sensitivity analysis show that the proposed techniques can produce more effective estimation results than those of the previous techniques, against sensor failures.

Development and Flight Test of Educational Water Rocket CULV-1 for Implementation of Launch Vehicle Separation Sequence and Imaging Data Acquisition (발사체 분리과정모사 및 단계별 영상획득이 가능한 교육용 물로켓 CULV-1 개발 및 비행시험)

  • Lee, Myeongjae;Park, Taeyong;Kang, Soojin;Jang, Sueun;Oh, Hyunung
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.2
    • /
    • pp.14-21
    • /
    • 2016
  • In this study, we proposed a water rocket CULV-1 (Chosun University Launch Vehicle-1). Unlike a conventional water rocket, CULV-1 can perform the booster rocket, fairing, and payload separation like an actual launch vehicle and also the imaging data acquisition. The conceptual and critical design of the proposed CULV-1 have been performed considering the operation characteristics. The verification tests have been performed from subsystem to system level in accordance with the established test specifications and verification procedures. Through the final launch test of the flight model, we have verified the design effectiveness of the proposed separation mechanisms for water rocket applications and the mission requirements of the CULV-1 also have been complied.

A Study on the Satellite Launch Vehicle Separation Detection Interface to Improve the Reliability of the Launch and Early Operation Phase

  • Lee, Nayoung;Kwon, Dong-young;Jeon, Hyeon-Jin;Jeon, Moon-Jin;Cheon, Yee-Jin
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.4
    • /
    • pp.57-63
    • /
    • 2021
  • The launch vehicle (LV) separation detection interface of the satellite, which is designed to initiate the launch and early operation phase (LEOP) for S-band data transmission and the solar array deployment after the LV separation, is one of the hazard items at the launch site. Therefore, this interface should satisfy the single-fault tolerance requirement for the range safety. In this paper, we discuss the LV separation detection interfaces for two different satellite launch configurations and propose a method to guarantee for the satellite to start the LEOP even under the emergency case such as a partial separation from the LV. Furthermore, the proposed method meets the range safety requirement of the launch site. As this method only changes the external harness configuration of the satellite, it increases the reliability of the satellite early operation without any modification of the existing internal logics to detect the separation event.

Certification Methodology of Aerospace Materials System (우주항공 재료시스템 품질인증)

  • Lee, Ho-Sung
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.2
    • /
    • pp.13-20
    • /
    • 2007
  • Structural qualification plan (SQP) for aerospace vehicle is based on material certification methodology, which must be approved by certification authority. It is internationally required to use of statistically based material allowables to design aerospace vehicles with aerospace materials. In order to comply with this regulation, it is necessary to establish relatively large amount of database, which increases test costs and time. Recently NASA/FAA develop the new methodology which results in cost, time, and risk reduction, and satisfies the regulation at the same time. This paper summarizes the certification methodology of materials system as a part of structural qualification plan (SQP) of aerospace vehicles and also thermal management of the vehicle system, like thermal protection materials system and thermally conductive material system. Materials design allowable was determined using this method for a carbon/epoxy composite material.

  • PDF

3-Dimensional Trajectory Optimization and Explicit Guidance for a Satellite Launch Vehicle with Yaw Maneuver (횡방향 기동을 하는 위성발사체의 3차원 궤적최적화와 직접식 유도기법)

  • No, Ung-Rae;Kim, Yu-Dan;Park, Jeong-Ju;Tak, Min-Je
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.7
    • /
    • pp.613-623
    • /
    • 2002
  • Ascent trajectory optimization and explicit guidance problems for a satellite launch vehicle with yaw maneuver in a 3-dimension are considered. The trajectory optimization problem with boundary conditions is formulated as a nonlinear programming problem by parameterizing the inertial pitch and yaw attitude control variables, and is solved by using the SQP algorithm. The flight constraints such as gravity-turn and range safety conditions are imposed. An explicit inertial guidance algorithm in the exoatmospheric phase is also presented. The guidance algorithm provides steering command and time-to-go value directly using the current states of the vehicle and the desired orbit insertion conditions. The liquid propelled Delta 2910 launch vehicle is used as a numerical model.

Vehicle Lateral Stability Management Using Gain-Scheduled Robust Control

  • You, Seung-Han;Jo, Joon-Sang;Yoo, Seung-Jin;Hahn, Jin-Oh;Lee, Kyo-Il
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1898-1913
    • /
    • 2006
  • This paper deals with the design of a yaw rate controller based on gain-scheduled H$\infty$ optimal control, which is intended to maintain the lateral stability of a vehicle. Uncertain factors such as vehicle mass and cornering stiffness in the vehicle yaw rate dynamics naturally call for the robustness of the feedback controller and thus H$\infty$ optimization technique is applied to synthesize a controller with guaranteed robust stability and performance against the model uncertainty. In the implementation stage, the feed-forward yaw moment by driver's steer input is estimated by the disturbance observer in order to determine the accurate compensatory moment. Finally, HILS results indicate that the proposed yaw rate controller can satisfactorily improve the lateral stability of an automobile.