• Title/Summary/Keyword: Aerospace Reliability

Search Result 451, Processing Time 0.026 seconds

A Study on the Nondestructive Test Optimum Design for a Ground Tracked Combat Vehicle (지상궤도전투장비의 비파괴검사 최적설계방안에 대한 연구)

  • Kim, Byeong Ho;Seo, Jae Hyun;Gil, Hyeon Jun;Kim, Seon Hyeong;Seo, Sang Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.5
    • /
    • pp.358-366
    • /
    • 2015
  • In this study, a nondestructive test (NDT) is performed to inspect the optimal design of a ground tracked combat vehicle for self-propelled artillery, tank, and armored vehicles. The minimum qualification required for personnel performing the NDT of a ground tracked combat vehicle was initially established in US military standards, and then applied to the Korean defense specifications to develop a ground tracked combat vehicle. However, the qualification standards of an NDT inspector have been integrated into NAS410 through the military and commercial specifications unification project that were applied in the existing aerospace/defense industry public standard. The design method for this study was verified by applying the optimal design to the liquid penetrant testing Al forging used in self-propelled artillery. This confirmed the reliability and soundness of the product.

THD Analysis of a Surface Textured Parallel Thrust Bearing: Effect of Dimple Radius and Depth (Surface Texturing한 평행 스러스트 베어링의 열유체윤활 해석: 딤플 반경과 깊이의 영향)

  • Jeong, YoHan;Park, TaeJo
    • Tribology and Lubricants
    • /
    • v.30 no.5
    • /
    • pp.303-310
    • /
    • 2014
  • In order to reduce friction and improve reliability, researchers have applied various surface texturing methods to highly sliding machine elements such as mechanical seals and piston rings. Despite extensive theoretical research on surface texturing, previous numerical results are only applicable to isothermal and iso-viscous conditions. Because the lubricant flow pattern of textured bearing surfaces is much more complicated than that for non-textured bearings, the Navier?Stokes equation is more suitable than the Reynolds equation for the former. This study carries out a thermohydrodynamic (THD) lubrication analysis to investigate the lubrication characteristics of a single micro-dimpled parallel thrust bearing cell. The analysis involves using the continuity, Navier?Stokes, energy, temperature?viscosity relation, and heat conduction equations with the commercial computational fluid dynamics (CFD) code FLUENT. This study discretizes these equations using the finite volume method and solves them using the SIMPLE algorithm. The results include finding the streamlines, pressure and temperature distributions, and variations in the friction force and leakage for various dimple radii and depths. Increasing the dimple radius and decreasing the depth causes a recirculation flow to form because of a strong vortex, and the oil temperature greatly increases compared with the non-textured case. The present numerical scheme and results are applicable to THD analysis of various surface-textured sliding bearings and can lead to further study.

A Design of Transceiver for Airborne Communication Applying AME Method (AME 방식을 적용한 항공통신용 송, 수신기 설계)

  • Hong, Gyo Young;Yoon, Kyoung Ho;Kim, Yoo Chang;Kim, Won Hoo
    • Journal of Advanced Navigation Technology
    • /
    • v.2 no.1
    • /
    • pp.53-60
    • /
    • 1998
  • This paper describes some design concepts and design parameters of RZ-SSB which allows full carrier insertion into the single side band to overcome the severe fading in aeronautical telecommunication, and it is described in ARINC Spec. in the name of AME(AM Equivalent), and the necessary transmission bandwidth of RZ-SSB is similar to that of a aeronautical telecommunication. As an amplitude limiter manage to remove the amplitude fading without degrading the quality of output signal, the receiver acts like the FM demodulators. Using the digital Signal Processing(DSP) techniques in the design of transceiver systems has become a performance enhancement of the signal quality and reliability, and making use of DSP, it's able to design low cost, compact transceiver and reduce its weight. For avionics systems is able to eliminate the inherent disadvantages in RZ-SSB, the results of experimental tests suggest that the adoption of RZ concepts is suitable for aeronautical telecommunication transceiver systems use in HF band.

  • PDF

An Adaptive Grid Resource Selection Method Using Statistical Analysis of Job History (작업 이력의 통계 분석을 통한 적응형 그리드 자원 선택 기법)

  • Hur, Cin-Young;Kim, Yoon-Hee
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.3
    • /
    • pp.127-137
    • /
    • 2010
  • As large-scale computational applications in various scientific domains have been utilized over many integrated sets of grid computing resources, the difficulty of their execution management and control has been increased. It is beneficial to refer job history generated from many application executions, in order to identify application‘s characteristics and to decide selection policies of grid resource meaningfully. In this paper, we apply a statistical technique, Plackett-Burman design with fold-over (PBDF), for analyzing grid environments and execution history of applications. PBDF design identifies main factors in grid environments and applications, ranks based on how much they affect to their execution time. The effective factors are used for selecting reference job profiles and then preferable resource based on the reference profiles is chosen. An application is performed on the selected resource and its execution result is added to job history. Factor's credit is adjusted according to the actual execution time. For a proof-of-concept, we analyzed job history from an aerospace research grid system to get characteristics of grid resource and applications. We built JARS algorithm and simulated the algorithm with the analyzed job history. The simulation result shows good reliability and considerable performance in grid environment with frequently crashed resources.

Small Turbojet Engine Test and Uncertainty Analysis (소형 터보제트 엔진 시험 및 불확도 분석)

  • Jun, Yong-Min;Yang, In-Young;Nam, Sam-Sik;Kim, Chun-Taek;Yang, Soo-Seok;Lee, Dae-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.118-126
    • /
    • 2002
  • The Altitude Engine Test Facility(AETF) was built at the Korea Aerospace Research Institute and has been being operated for the gas turbine engines in the class of 3,000 lbf thrust. To enhance the confidence level of AETF to the international level, a series of studies and facility modification have been conducted to improve the measurement uncertainty and reliability. In this paper, some part of the facility evaluation tests performed with a single spool turbojet engine are introduced. Tests were performed simulating the flight conditions as steady state, sea level for various flight speeds (i.e., Mn=0.3, 0.5, 0.7, 0.9). The obtained test results are compared with the predicted values of the engine DECK. The measurement uncertainties of airflow, net thrust, fuel flow and SFC showed 0.791~0.914%, 0.851~1.706%, 1.372~7.348% and 1.642~5.205%, respectively. Thus, from this research, the improvement methods of uncertainties on AETF has been confirmed.

Thermohydrodynamic Lubrication Analysis of Surface-Textured Parallel Slider Bearing: Effect of Dimple Depth (Surface Texturing한 평행 슬라이더 베어링의 열유체윤활 해석: 딤플 깊이의 영향)

  • Park, TaeJo;Kim, MinGyu
    • Tribology and Lubricants
    • /
    • v.33 no.6
    • /
    • pp.288-295
    • /
    • 2017
  • In order to improve the efficiency and reliability of the machine, the friction should be minimized. The most widely used method to minimize friction is to maintain the fluid lubrication state. However, we can reduce friction only up to a certain limit because of viscosity. As a result of several recent studies, surface texturing has significantly reduced the friction in highly sliding machine elements, such as mechanical seals and thrust bearings. Thus far, theoretical studies have mainly focused on isothermal/iso-viscous conditions and have not taken into account the heat generation, caused by high viscous shear, and the temperature conditions on the bearing surface. In this study, we investigate the effect of dimple depth and film-temperature boundary conditions on the thermohydrodynamic (THD) lubrication of textured parallel slider bearings. We analyzed the continuity equation, the Navier-Stokes equation, the energy equation, and the temperature-viscosity and temperature-density relations using a computational fluid dynamics (CFD) code, FLUENT. We compare the temperature and pressure distributions at various dimple depths. The increase in oil temperature caused by viscous shear was higher in the dimple than in the bearing outlet because of the action of the strong vortex generated in the dimple. The lubrication characteristics significantly change with variations in the dimple depths and film-temperature boundary conditions. We can use the current results as basic data for optimum surface texturing; however, further studies are required for various temperature boundary conditions.

Influence of complex environment test on lead-free solder joint reliability (온도변화에 따른 진동의 무연솔더 접합부 신뢰성에 미치는 영향)

  • Sa, Yoon-Ki;Yoo, Se-Hoon;Kim, Yeong-K.;Lee, Chang-Woo
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.77-77
    • /
    • 2009
  • ELV(; End of Life Vehicles)를 비롯한 최근 환경 동향은 자동차 전장 모듈에 대하여 다양한 무연 솔더 적용을 요구하고 있다. 특히 자동차 엔진룸과 트랜스미션은 가동 중 고온 및 진동의 지속적인 영향을 받기 때문에 이와 유사한 환경에서의 신뢰성 연구가 필요한 시점이다. 이에 본 연구에서는 Sn3.5Ag, Sn0.7Cu, Sn5.0Sb 솔더 조성에 대하여 복합환경 조건하에서 접합부 신뢰성을 평가하였다. 복합환경을 구현하기 위하여 $-40{\sim}150^{\circ}C$ 범위의 온도 사이클과 랜덤 진동을 동시에 인가하였으며, 진동 가속도 3G, 진동주파수는 10~1000Hz 로 설정하여 자동차 환경을 충족하였다. 복합시험의 1 cycle 은 20 시간이며, 총 120 시간의 시험 동안 진동의 영향 및 진동과 고온이 동시에 작용하였을 경우의 영향에 대해 비교하였다. 테스트 모듈 제작을 위해 450 um 의 솔더볼이 적용되었으며, 각 조성의 솔더볼을 이용하여 BGA test chip 제작하였고, 제작된 BGA test chip 은 다시 daisy chain PCB 위에 실장 및 리플로우 공정을 통해 접합되었다. 테스트 동안 In-situ 로 저항의 변화를 관찰하여 파단의 유무를 판단하였고 전자주사현미경을 통해 파괴 기전을 평가하였다. 복합시험 시간에 따른 전단강도를 측정하였으며, 각 조성에 대하여 상이한 전단강도 변화를 관찰하였다. 계면 IMC 형상은 전단강도 변화에 영향을 주었으며, 특히 높은 온도가 IMC 성장을 촉진시켜 전단강도 감소에 영향을 주었다. 본 복합환경 시험 조건에서는 Sn0.7Cu 가 가장 안정적이었으며, 파단면을 관찰한 결과 연성파괴 모드가 관찰되었다.

  • PDF

Comparison of various structural damage tracking techniques based on experimental data

  • Huang, Hongwei;Yang, Jann N.;Zhou, Li
    • Smart Structures and Systems
    • /
    • v.6 no.9
    • /
    • pp.1057-1077
    • /
    • 2010
  • An early detection of structural damages is critical for the decision making of repair and replacement maintenance in order to guarantee a specified structural reliability. Consequently, the structural damage detection, based on vibration data measured from the structural health monitoring (SHM) system, has received considerable attention recently. The traditional time-domain analysis techniques, such as the least square estimation (LSE) method and the extended Kalman filter (EKF) approach, require that all the external excitations (inputs) be available, which may not be the case for some SHM systems. Recently, these two approaches have been extended to cover the general case where some of the external excitations (inputs) are not measured, referred to as the adaptive LSE with unknown inputs (ALSE-UI) and the adaptive EKF with unknown inputs (AEKF-UI). Also, new analysis methods, referred to as the adaptive sequential non-linear least-square estimation with unknown inputs and unknown outputs (ASNLSE-UI-UO) and the adaptive quadratic sum-squares error with unknown inputs (AQSSE-UI), have been proposed for the damage tracking of structures when some of the acceleration responses are not measured and the external excitations are not available. In this paper, these newly proposed analysis methods will be compared in terms of accuracy, convergence and efficiency, for damage identification of structures based on experimental data obtained through a series of laboratory tests using a scaled 3-story building model with white noise excitations. The capability of the ALSE-UI, AEKF-UI, ASNLSE-UI-UO and AQSSE-UI approaches in tracking the structural damages will be demonstrated and compared.

Performance Analysis of CPV Modules for Optimizing Secondary Optical Elements (CPV모듈의 2차 광학계 특성에 따른 성능분석)

  • Park, Jeom-Ju;Jeong, Byeong-Ho;Park, Ju-Hoon;Lee, Kang-Yeon;Kim, Hyo-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.5
    • /
    • pp.23-34
    • /
    • 2020
  • Concentrator photovoltaic (CPV) system consists of high-quality complex optical elements, mechanical devices, and electronics components and can have the advantages of high integration and high-efficiency energy sources. III-V compound semiconductor cells have proven performance based on high reliability in the aerospace field, but have characteristics that require absolute support of the balance of systems (BOS) such as solar position trackers, receivers with heat sinks, and housing instruments. To determine the optimum parameters of secondary optical elements (SOEs) design for CPV systems, we designed three types of CPV modules, classified as non-SOEs type, reflective mirror type, and CPC lens type. We measured the I-V and P-V characteristics of the prototype CPV modules with the angle of inclination varying from 0° to 12° and with a 500-magnification Fresnel lens. The experimental results assumed misalignment of the solar position tracker or module design of pinpoint accuracy. As a result, at the 0° tilt angle, the CPC lens produced lower power due to the quartz transmittance ratio compared to that by other SOEs. However, for tilt angles greater than 3°, the CPC lens type module achieved high efficiency and stability. This study is expected to help design high-performance CPV systems.

Effects of Cyclic Thermal Load on the Signal Characteristics of FBG Sensors Packaged with Epoxy Adhesives (주기적인 반복 열하중이 패키징된 FBG 센서 신호 특성에 미치는 영향)

  • Kim, Heonyoung;Kang, Donghoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.4
    • /
    • pp.313-319
    • /
    • 2017
  • Fiber optics sensors that have been mainly applied to aerospace areas are now finding applicability in other areas, such as transportation, including railways. Among the sensors, the fiber Bragg grating (FBG) sensors have led to a steep increase due to their properties of absolute measurement and multiplexing capability. Generally, the FBG sensors adhere to structures and sensing modules using adhesives such as an epoxy. However, the measurement errors that occurred when the FBG sensors were used in a long-term application, where they were exposed to environmental thermal load, required calibration. For this reason, the thermal curing of adhesives needs to be investigated to enhance the reliability of the FBG sensor system. This can be done at room temperature through cyclic thermal load tests using four types of specimens. From the test results, it is confirmed that residual compressive strain occurs to the FBG sensors due to an initial cyclic thermal load. In conclusion, signals of the FBG sensors need to be stabilized for applying them to a long-term SHM.