• Title/Summary/Keyword: Aerospace Propulsion System

Search Result 385, Processing Time 0.023 seconds

A Study on the Local Regression Rate of Solid Fuel in Hybrid Rocket (하이브리드 로켓에서의 고체연료의 국부 후퇴율에 관한 연구)

  • Kim, Soojong;Lee, Jungpyo;Kim, Gihun;Cho, Jungtae;Kim, Hakchul;Woo, Kyoungjin;Moon, Heejang;Sung, Hong-Gye;Kim, Jin-Kon
    • Journal of Aerospace System Engineering
    • /
    • v.2 no.4
    • /
    • pp.1-6
    • /
    • 2008
  • In generally, the regression rate was expressed with average value and oxidizer mass flux in hybrid propulsion system. This can not represent the local value of regression rate along with oxidizer flow direction. In this study, experimental studies were performed with Separation method and Cutting method for measure local regression rate. In axial injection, the local regression rate decreases rapidly with axial location near entrance and increases with axial direction from the leading edge and the empirical formula for local regression rate with function of oxidizer mass flux and location was derived. Swirl injection regression rate has higher value at the leading edge of the fuel and comparatively uniform regression rate at the downstream. Overall regression rate of swirl injection is higher increased about 54 % than regression rate of axial injection.

  • PDF

Basic Model for Propellant Tank Ullage Calculation (추진제탱크 얼리지 해석을 위한 기본모델)

  • Kwon, Oh-Sung;Cho, Nam-Kyung;Cho, In-Hyun
    • Aerospace Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.125-132
    • /
    • 2010
  • Estimation of pressurant mass flowrate and its total mass required to maintain propellant tank pressure during propellant outflow is very important for design of pressurization control system and pressurant storage tank. Especially, more pressurant mass is required to maintain pressure in cryogenic propellant tank, because of reduced specific volume of pressurant due to heat transfer between pressurant and tank wall. So, basic model for propellant tank ullage calculation was proposed to estimate ullage and tank wall temperature distribution, required pressurant mass, and energy distribution of pressurant in ullage. Both test and theoretical analysis have been conducted, but only theoretical modeling method was addressed in this paper.

Estimation of Hovering Flight Time of Battery-Powered Multicopters

  • Cho, Mun jin;Han, Cheolheui
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.4
    • /
    • pp.11-20
    • /
    • 2021
  • The estimation of hovering flight time of multicopters using the battery power propulsion system is important for the development and design of the aircraft and its operation. For a given operational weight, the maximum possible battery weight can be decided using both a conventional energy density method and a new Peukert law. In the present study, the hovering flight time is predicted using both methods. The specific data of multicopters in the published literatures were employed for the computation of the hovering flight time. The results were validated with the measured data. The effect of figure of merit of propeller, battery discharging process on the hovering flight time was evaluated, Finally, the effect of the battery cell and package connection types on the hovering time was investigated. It was found that the combination of serial battery cell connections and parallel package connection is the bast in the endurance maximization aspect. As the cell number increases in a package, the hovering flight time is increased. There exists the max. battery ratio for the given takeoff gross weight.

Analysis on Delta-Vs to Maintain Extremely Low Altitude on the Moon and Its Application to CubeSat Mission

  • Song, Young-Joo;Lee, Donghun;Kim, Young-Rok;Jin, Ho;Choi, Young-Jun
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.213-223
    • /
    • 2019
  • This paper analyzes delta-Vs to maintain an extremely low altitude on the Moon and investigates the possibilities of performing a CubeSat mission. To formulate the station-keeping (SK) problem at an extremely low altitude, current work has utilized real-flight performance proven software, the Systems Tool Kit Astrogator by Analytical Graphics Inc. With a high-fidelity force model, properties of SK maneuver delta-Vs to maintain an extremely low altitude are successfully derived with respect to different sets of reference orbits; of different altitudes as well as deadband limits. The effect of the degree and order selection of lunar gravitational harmonics on the overall SK maneuver strategy is also analyzed. Based on the derived SK maneuver delta-V costs, the possibilities of performing a CubeSat mission are analyzed with the expected mission lifetime by applying the current flight-proven miniaturized propulsion system performances. Moreover, the lunar surface coverage as well as the orbital characteristics of a candidate reference orbit are discussed. As a result, it is concluded that an approximately 15-kg class CubeSat could maintain an orbit (30-50 km reference altitude having ${\pm}10km$ deadband limits) around the Moon for 1-6 months and provide almost full coverage of the lunar surface.

Experimental Investigation of the LRE Thrust Chamber Regenerative Cooling(II) (액체로켓엔진 추력실의 재생냉각에 관한 실험적 연구 (II))

  • Kim, Jung-Hun;Jeong, Hea-Seung;Park, Hee-Ho;Park, Kye-Seung;Kim, Yoo;Moon, Il-Yoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.53-56
    • /
    • 2003
  • This paper describes the general design procedure of cooling system for liquid rocket engine(LRE). From this design logic, cooling channels are designed and fabricated. The measured heat flux from firing test is similar to the heat flux predicted by design logic. Therefore, the proposed design procedure of cooling channel can be applied to real LRE system. Also the result of firing test indicates that combustion pressure and mixture ratio have an influence on the heat flux to be produced in combustion chamber.

  • PDF

Research about Thermoacoustic Resonance Ignition (열음향 공진 점화에 대한 연구)

  • Seo, Seonghyeon;Kang, Sang Hun;Bae, Jong Yeol;Lee, Jin Young
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.1
    • /
    • pp.82-89
    • /
    • 2016
  • The unique phenomenon that jet flow kinetic energy is converted to thermal energy through thermoacoustic resonance can be applied for the multiple ignition of liquid rocket engines. The present article includes the basic principle and theory behind the phenomenon as well as major outstanding, previous research works. The thermoacoustic phenomenon is affected by underexpanded jet flow characteristics from a nozzle, geometries of a nozzle and a resonance tube, and chemical composition of jet flow. The paper concludes with discussion what should be considered as crucial issues for the future research on the development of a multiple ignition system of liquid rocket engines.

Design of Gun Launched Ramjet Propelled Artillery Shell with Inviscid Flow Assumption (비점성 유동을 가정한 포 발사 램제트 추진탄 설계)

  • Kang, Shinjae;Park, Chul;Jung, Woosuk;Kwon, Taesoo;Park, Juhyeon;Kwon, Sejin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.4
    • /
    • pp.52-60
    • /
    • 2015
  • Operation area of corps was expanded under military reformation, and extending range of 155 mm howitzer became important issue. New approach is needed to extend range to 80 kim. Ramjet engine is air breathing engine, and it can provide specific impulse several times more than solid rocket motor so that range is extended using same weight of propellant. If the ramjet engine is gun-launched system, it does not require any other booster because muzzle velocity is near Mach 3. Especially solid fuel ramjet (SFRJ) does not have any moving part so that it is favorable for gun-launching system which is under high stress during launching. In this paper, we design air intake, combustion chamber, and nozzle of 155 mm gun launched ramjet propelled artillery shell with inviscid flow assumption. We conduct parameter study to have range more than 80 km, and maximum high explosive volume.

Longitudinal Modal Analysis of a LOX-filled Tank Using the Virtual Mass Method

  • Lee, SangGu;Sim, JiSoo;Shin, SangJoon;Kim, Youdan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.807-815
    • /
    • 2017
  • For liquid rocket engine(LRE)-based space launch vehicles, longitudinal instability, often referred to as the pogo phenomenon in the literature is predicted. In the building block of system-level task, accurate dynamic modeling of a fluid-filled tank is an essential. This paper attempts to apply the virtual mass method that accounts for the interaction of the vehicle structure and the enclosed liquid oxygen to LOX-filled tanks. The virtual mass method is applied in a modal analysis considering the hydroelastic effect of the launch vehicle tank. This method involves an analysis of the fluid in the tank in the form of mass matrix. To verify the accuracy of this method, the experimental modal data of a small hemispherical tank is used. Finally, the virtual mass method is applied to a 1/8-scale space shuttle external tank. In addition, the LOX tank bottom pressure in the external tank model is estimated. The LOX tank bottom pressure is the factor required for the coupling of the LOX tank with the propulsion system. The small hemispherical tank analysis provides relatively accurate results, and the 1/8-scale space shuttle external tank provides reasonable results. The LOX tank bottom pressure is also similar to that in the numerical results of a previous analysis.

Computational Investigation of the Effect of UAV Engine Nozzle Configuration on Infrared Signature (무인항공기 노즐 형상 변화에 따른 IR 신호 영향성 연구)

  • Kang, Dong-Woo;Kim, June-Young;Myong, Rho-Shin;Kim, Won-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.10
    • /
    • pp.779-787
    • /
    • 2013
  • The effects of various nozzle configurations on infrared signature are investigated for the purpose of analysing the infrared signature level of aircraft propulsion system. A virtual subsonic aircraft is selected and then a circular convergent nozzle, which meets the mission requirements, is designed. Convergent nozzles of different configurations are designed with different geometric profiles. Using a compressible Navier-Stokes-Fourier CFD code, an analysis of thermal flow field and nozzle surface temperature distribution is conducted. From the information of plume flow field and nozzle surface temperature distribution, IR signature of plume and nozzle surface is calculated through the narrow-band model and the RadThermIR code. Finally, qualitative information for IR signature reduction is obtained through the analysis of the effects of various nozzle configurations on IR signature.

LOX conditioning을 위한 재순환배관의 성능해석 및 설계인자 파악

  • Kwon, Oh-Sung;Cho, Nam-Kyung;Chung, Yong-Gab;Cho, In-Hyun
    • Aerospace Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.196-202
    • /
    • 2005
  • In cryogenic feeding system of turbo pump fed liquid-propulsion rocket, rise of cryogenic propellant temperature can bring into geysering in pipe or cavitation in turbo pump. In this paper, performance analysis of recirculation line which is one of the method to inhibit these phenomenon is carried out based on the configuration of KSLV-I 1st stage LOX feeding system, and parametric study to find design parameter. Diameter and re-entrance height, initial LOX temperature, ullage pressure, and natural convection heat transfer coefficient are varied to see the effects on performance. Additional He is injected into recirculation line to promote LOX recirculation. 1-dimensional analysis using network-solver, SINDA/FLUINT is carried out.

  • PDF