• 제목/요약/키워드: Aerospace Flight Vehicle

Search Result 278, Processing Time 0.257 seconds

FDTD Analysis of the Mutual Coupling Between Closely Placed IFAs (근접한 IFA 사이의 신호결합에 대한 FDTD 해석)

  • Ji, Ki-Man;Lee, Soo-Jin;Chung, Eui-Seung
    • Aerospace Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.106-115
    • /
    • 2010
  • Because of space limitations, interferences between antennas of the KSLV-I communication systems occur and their effects become worse during all sorts of tests such as the flight test using a light plane. In this paper, coupled signal magnitude is calculated using the FDTD method. The theory of the FDTD, absorbing boundary condition, source input technique, and post processing of data are explained. The calculated coupling factor between two IFAs, which have 2 GHz resonance frequency and placed 5 cm apart, is -12.7 dB. Applied coupling calculation method can be effectively used for KSLV-I performance analysis, subsystem design, antenna arrangement, and communication link budget for the next space launch vehicle.

Synthetic Infra-Red Image Dataset Generation by CycleGAN based on SSIM Loss Function (SSIM 목적 함수와 CycleGAN을 이용한 적외선 이미지 데이터셋 생성 기법 연구)

  • Lee, Sky;Leeghim, Henzeh
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.476-486
    • /
    • 2022
  • Synthetic dynamic infrared image generation from the given virtual environment is being the primary goal to simulate the output of the infra-red(IR) camera installed on a vehicle to evaluate the control algorithm for various search & reconnaissance missions. Due to the difficulty to obtain actual IR data in complex environments, Artificial intelligence(AI) has been used recently in the field of image data generation. In this paper, CycleGAN technique is applied to obtain a more realistic synthetic IR image. We added the Structural Similarity Index Measure(SSIM) loss function to the L1 loss function to generate a more realistic synthetic IR image when the CycleGAN image is generated. From the simulation, it is applicable to the guided-missile flight simulation tests by using the synthetic infrared image generated by the proposed technique.

Structural Optimization of 3D Printed Composite Flight Control Surface according to Diverse Topology Shapes (다양한 위상 형상에 따른 3D 프린트 복합재료 조종면의 구조 최적화)

  • Myeong-Kyu Kim;Nam Seo Goo;Hyoung-Seock Seo
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.211-216
    • /
    • 2023
  • When designing ships and aircraft structures, it is important to design them to satisfy weight reduction and strength. Currently, studies related to topology optimization using 3D printed composite materials are being actively conducted to satisfy the weight reduction and strength of the structure. In this study, structural analysis was performed to analyze the applicability of 3D printed composite materials to the flight control surface, one of the parts of an aircraft or unmanned aerial vehicle. The optimal topology shape of the flight control surface for the bending load was analyzed by considering three types (hexagonal, rectangular, triangular) of the topology shape of the flight control surface. In addition, the bending strength of the flight control surface was analyzed when four types of reinforcing materials (carbon fiber, glass fiber, high-strength high-temperature glass fiber, and kevlar) of the 3D printed composite material were applied. As a result of comparing the three-point bending test results with the finite element method results, it was confirmed that the flight control surface with hexagonal topology shape made of carbon fiber and Kevlar had excellent performance. And it is judged that the 3D printed composite can be sufficiently applied to the flight control surface.

Reference Trajectory Optimization of a Launch Vehicle M-3H-3 for Scientific Missions (과학위성 발사체 M-3H-3의 기준궤적 최적화)

  • Lee, Seung-H.;Choi, Jae-W.;Lee, Jang-G.
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.361-365
    • /
    • 1991
  • The problem being considered here is the determination of optimal guidance laws for a launch vehicle for scientific missions. The optimal guidance commands are determined in the sense that the least amount of fuel is used. A numerical solution was obtained for the case where the position and velocity state variables satisfy a specified constraint at the time of thrust cutoff. The method used here is based on the Pontryagin's maximum principle. This is the method of solving a problem in the calculus of variations. In particular, it applies to the problem considered here where the magnitude of the control is bounded. Simulations for the optimal guidance algorithm, during the 2nd and the 3rd-stage flight of the Japanese rocket M-3H-3, are carried out. The results show that the guided trajectory that satisfying the terminal constraints is optimal, and the guidance algorithm works well in the presence of some errors during the 1st-stage pre-programmed guidance phase.

  • PDF

Design of launch pad for mitigating acoustic loads on launch vehicle at liftoff (우주발사체 발사 시 음향하중 저감을 위한 발사대 설계)

  • Tsutsumi, Seiji
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.331-341
    • /
    • 2020
  • At liftoff, launch vehicles are subject to harmful acoustic loads due to the intense acoustic waves generated by propulsion systems. Because these waves can cause electronic and mechanical components of launch vehicles and payloads to fail, predicting and mitigating acoustic loads is an important design issue. This article presents the latest information about the generation of acoustic waves and the acoustic design methods applicable to the launch pad. The development of the Japanese Epsilon solid launcher is given as an example of the new methodology for launch pad design. Computational fluid dynamics together with 1/42 scale model testing were performed for this development. Effectiveness of the launch pad design to reduce acoustic loads was confirmed by the post-flight analysis.

Generation of System Requirements for Smart UAV (스마트 무인기 시스템 요건 도출)

  • Lee, Jung Jin
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.32-38
    • /
    • 2005
  • This paper presents the brief generation process of system requirements for Smart UAV from a development objective. The current Smat UAV requirements deal with the restricted life cycle from development to test and verification exclusive of full life cycle because of the new technology demonstration research program funded by governments. The Smart UAV system consists of flight vehicle, avionics, communication link, payload, ground control station and ground supporting system. In this paper, top-down flown requirements are introduced how to allocate to each sub-system.

  • PDF

A Distance Measurement System Using a Laser Pointer and a Monocular Vision Sensor (레이저포인터와 단일카메라를 이용한 거리측정 시스템)

  • Jeon, Yeongsan;Park, Jungkeun;Kang, Taesam;Lee, Jeong-Oog
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.5
    • /
    • pp.422-428
    • /
    • 2013
  • Recently, many unmanned aerial vehicle (UAV) studies have focused on small UAVs, because they are cost effective and suitable in dangerous indoor environments where human entry is limited. Map building through distance measurement is a key technology for the autonomous flight of small UAVs. In many researches for unmanned systems, distance could be measured by using laser range finders or stereo vision sensors. Even though a laser range finder provides accurate distance measurements, it has a disadvantage of high cost. Calculating the distance using a stereo vision sensor is straightforward. However, the sensor is large and heavy, which is not suitable for small UAVs with limited payload. This paper suggests a low-cost distance measurement system using a laser pointer and a monocular vision sensor. A method to measure distance using the suggested system is explained and some experiments on map building are conducted with these distance measurements. The experimental results are compared to the actual data and the reliability of the suggested system is verified.

Performance Analysis of KSLV-II Launch Vehicle with Liquid Rocket Boosters (액체로켓 부스터를 부착한 한국형발사체의 발사 성능 분석)

  • Yang, Won-Seok;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.7
    • /
    • pp.544-551
    • /
    • 2014
  • A program of launch vehicle performance analysis is composed for the education of the conceptual design of launch vehicles and the requirement analysis for the propulsion system design. The program is applied for the mission analysis of space launch vehicles based on KSLV-II with liquid rocket boosters. The 75-ton class liquid rocket engine is assumed for the boosters by referring the mass ratio of KSLV-II second stage. The launch performance analysis is carried out for KSLV-II with 2, 3 and 4 boosters by targeting the circular orbit of 700 km altitude. The trajectory is assumed as two-dimension considering the variation of the flight environment. Payload of advanced KSLV-II could be increased to maximum 3 tons, though it is limited by the thrust performance of the upper stage.

Design review of fuel vent-relief valve (연료 벤트/릴리프 밸브의 설계 분석)

  • Jang, JeSun;Kil, GyoungSub;Han, SangYeop;Park, Jong-Ho
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.109-116
    • /
    • 2012
  • A vent-relief valve performs as a safety-valve assembly for liquid propellant feeding system of space launch vehicle, which relives pressurant propellant tanks during the filling and the flight. At vent mode, valve is opened and closed by driving pneumatic pressure, and at relief mode, valve is automatically operated to set relief pressure. In this study, we have analyzed a basic layout of vent-relief valve which is designed using foreign LVs(Saturn) to satisfy requirements of Korean Space Launch Vehicle. The simulation model of vent-relief valve is designed by using the AMESim code to verify design parameters and evaluate pneumatic behaviors of valve. In this study, we performed dynamic characteristic simulations on design parameters. And we could predict opening/closing time and pressures, operating performances on design parameters. Using this results, we could suggest detail design and boundary conditions of design.

The Aspects, Reasons and Outcomes of an Unmanned Air Vehicle Crash Caused By Engine Failure

  • Cuhadar, Ismet;Dursun, Mahir
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • The Unmanned Air Vehicle (UAV) systems are indispensable tools of air surveillance and reconnaissance nowadays. Via this systems, hazardous end risky intelligence gathering activities are handled easily. Although they are named as "Unmanned" the UAV systems are commanded by pilots/operators. So, because of weather conditions, enemy attacks etc. as well as pilot error it is possible to face with sudden Round per Minute (RPM) drops and subsequently engine cut/stop during a mission flight at high altitudes. In this case, there are some very urgent decisions to make and rapid "emergency procedure" steps to take in a very short time before Line of Sight (LOS) is lost. The time before crash and the distance to landing air base need to be calculated, the Return Home route need to be checked and the landing/crash side need to be determined. Therefore it is a vital necessity that UAV pilots have some extra qualifications like being determined, well instructed and trained, experienced apart from operating ability. Within this scope, for an education process of a UAV pilot experience sharing and lessons learned are as important as simulators even more. By means of lessons learned it is possible to find out the reasons, mistakes and prevent the likely UAV accidents. In this study it is told about a real UAV crash, experienced of the pilot, the dos and don'ts and the difficulties. Thus it is aimed to help the people who can experience the same or similar situations in future.