• Title/Summary/Keyword: Aerosol removal efficiency

Search Result 51, Processing Time 0.025 seconds

Performance assessment of HEPA filter to reduce internal dose against radioactive aerosol in nuclear decommissioning

  • Hee Kwon Ku;Min-Ho Lee;Hyunjin Boo;Geun-Dong Song;Deokhee Lee;Kaphyun Yoo;Byung Gi Park
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1830-1837
    • /
    • 2023
  • The thermal cutting of contaminated or activated metals during decommissioning nuclear power plants inevitably results in the release of radioactive aerosol. Since radioactive aerosols are pernicious particles that contribute to the internal dose of workers, air conditioning units with a HEPA filter are used to remove radioactive aerosols. However, a HEPA filter cannot be used permanently. This study evaluates the efficiency and lifetime of filters in actual metal cutting condition using a plasma arc cutter and a high-resolution aerosol detector. The number concentration and size distribution of aerosols from 6 nm to 10 ㎛ were measured on both the upstream and downstream sides of the filter. The total aerosol removal efficiency of HEPA filter satisfies the standard of removing at least 99.97% of 0.3 ㎛ airborne particles, even if the pressure drop increases due to dust feeding load. The pressure drop and particle size removal efficiency at 0.3 ㎛ of the HEPA filter were found to increase with repeated cutting experiments. By contrast, the efficiency of used HEPA filter reduced in removing nano-sized aerosols by up to 79.26%. Altogether, these results can be used to determine the performance guidance and replacement frequency of HEPA filters used in nuclear power plants.

Performance and reusability of certified and uncertified face masks (보건용 마스크 초미세먼지 제거 성능 평가 및 재사용 연구)

  • Lee, Haebum;Kim, Seojeong;Joo, HungSoo;Cho, Hee-joo;Park, Kihong
    • Particle and aerosol research
    • /
    • v.15 no.4
    • /
    • pp.191-202
    • /
    • 2019
  • In this study, performance (particle removal efficiency and breathing resistance) of several commercially available face masks (electrostatic filter masks (KF80 certified), a nanofiber filter mask (KF80 certified), and an uncertified mask) with their filter structure and composition were evaluated. Also, effects of relative humidity (RH) of incoming air, water and alcohol exposure, and reusability on performance of face masks were examined. Monodisperse and polydisperse sodium chloride particles were used as test aerosols. Except the uncertified mask filter, PM2.5 removal efficiency was found to be higher than 90%, and the nanofiber filter mask had the highest quality factor due to the low pressure drop and high removal efficiency (nanofibers were arranged in a densely packed pore structure and contained a significant amount of fluorine in addition to carbon and oxygen). In the case of the KF80 certified mask, the removal efficiency was little affected when the RH of incoming air increased. When the mask filters were soaked in water, the removal efficiency of mask filters was degraded. In particular, the uncertified mask filter showed the highest removal efficiency degradation (26%). When the mask was soaked in alcohol, the removal efficiency also decreased with the greater degree than the water soaking case. The nanofiber mask filter showed the strongest resistance to alcohol exposure among tested mask filters. During evaluation of reusability of masks in real life, the removal efficiency of certified mask filter was less than 4% for 5 consecutive days (2 hours per day), while the removal efficiency of uncertified mask filter significantly decreased by 30% after 5 days.

Performance characteristics of simultaneous removal equipment for paint particulate matter and VOCs generated from a spraying paint booth (입자상물질과 VOCs 동시제거 실증장치에서 자동차 페인트 부스 발생 paint aerosol과 VOCs의 동시제거 성능 특성)

  • Lee, Jae-Rang;Hasolli, Naim;Jeon, Seong-Min;Lee, Kang-San;Kim, Kwang-Deuk;Park, Young-Ok
    • Particle and aerosol research
    • /
    • v.12 no.4
    • /
    • pp.161-168
    • /
    • 2016
  • The purpose of this study is to determine the performance characteristics of the paint particulate and volatile organic compounds(VOCs) simultaneous removal from the spraying paint booth in the laboratory and real site by sticky paint particulate and VOCs simultaneous removal demonstration unit. The sticky paint particulate and VOCs simultaneous removal unit is composed of the horizontal type pleated filter modules and the zig-zag type granular activated carbon packing modules. The test conditions at the laboratory are $50.15g/m^3$ of average paint aerosol concentration and 300 ppm of VOCs concentration which were same as the working conditions of spraying paint booth in the real site. But, the demonstration conditions at the real site are varied according to the working condition of spraying paint booth for the kind of passenger car bodies. The test results at the laboratory obtained that 99% of total particulate collection efficiency at 0.62 m/min of filtration velocity and 84% at 1.77 m/min of filtration velocity. The VOCs removal efficiencies are 97% at $3500hr^{-1}$ of gas hour space velocity and 59% at $10,000hr^{-1}$ of gas hour space velocity. In the real site test, the average removal efficiency of PM10 was measured to be 99.65%, the average removal efficiency of PM2.5 was 99.38%, the average removal efficiency of PM1 was 98.52%, and the average removal efficiency of VOCs was 89%.

Evaluation of Removal Efficiency of Water Contents using Inertial Impaction Separator (관성 충돌 방식의 액적 분리장치의 수분제거효율 평가)

  • Lee, Sin Young;Hong, Won Seok;Shin, Wanho;Kim, Gyujin;Song, Dong Keun
    • Particle and aerosol research
    • /
    • v.9 no.1
    • /
    • pp.23-29
    • /
    • 2013
  • Inertial impaction type mist eliminators are the most effective instruments to separate mist from the gas. In this work, the effect of the horizontal chevron type mist eliminators is characterized experimentally. Droplet size distribution and evaluation of removal efficiency of the chevron type mist eliminators at different gas flows were investigated using an aerosol particle size analyzer and a portable aerosol spectrometer, respectively. The experimental investigations showed that the mist removal efficiency in these instruments is dependent in the droplet size, and the pressure drop is nil.

Numerical Analysis on Removal Efficiency of Water Droplets in a Curved Vane Mist Eliminator with Consideration of Evaporation and Condensation at Surface of Droplets (액적 표면에서 증발 및 응축을 고려한 곡면 형상 액적 제거장치의 제거 효율에 대한 수치 해석)

  • Song, Dong Keun
    • Particle and aerosol research
    • /
    • v.12 no.4
    • /
    • pp.135-143
    • /
    • 2016
  • Removal of water contents in a gas is needed in industrial field of gas processing related on energy production/conversion, and environmental treatment. Inertial separators are economic devices for separating droplets from the gas stream. For accurate understanding of removal process in a curved vane mist eliminator, a numerical model including turbulent dispersion, evaporation and condensation of water vapor at surface of droplets is required. A two-stage curved vane mist eliminator has been modeled, and fluid flow of mixture of air and water vapor and droplet trajectories were solved simultaneously with taking into account two-way coupling. Removal efficiency of droplets with various inlet condition of relative humidities (RH, 40%, 90%, and 100%) were compared. As RH increased, the effect of evaporation decreased and inertial separation efficiencies of droplets obtained increased especially for droplets of diameter below 10 micrometers.

Theoretical and experimental study for optimization method of particle removal fibrous filter used in ventilation system (입자 제거용 환기 필터의 설계 변수 선정 기법을 위한 이론 및 실험적 연구)

  • Jung, Yee-Kyeong;Noh, Kwang-Chul;Park, Jae-Hong;Hwang, Jungho
    • Particle and aerosol research
    • /
    • v.5 no.1
    • /
    • pp.9-16
    • /
    • 2009
  • Pressure drop and particle removal efficiency of two commercial fibrous medium filters were measured with 20~1,000 nm sized aerosolized KCl particles. Pressure drop and particle removal efficiency were also theoretically predicted and the results qualitatively agreed with the experimental data. For this given particle removal efficiency, a filter design method for obtaining minimum pressure drop (and therefore minimum fan power) was suggested in this study by selecting solidity and fiber diameter as parameters. Therefore, by carrying out theoretical and experimental approaches together, this paper introduced a way of finding conditions for low pressure drop and high performance of a fibrous filter, especially if the filter would be used in mechanical ventilation system.

  • PDF

Efficiency of the Hybrid-type Air Purifier on Reducing Physical and Biological Aerosol (복합식 공기청정기의 물리적 및 생물학적 입자상 물질의 제거 효과)

  • Kim, Ki-Youn;Kim, Chi-Nyon;Kim, Yoon-Shin;Roh, Young-Man;Lee, Cheol-Min
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.5 s.92
    • /
    • pp.478-484
    • /
    • 2006
  • There was no significant difference in the CADR (Clean Air Delivery Rate) between physical aerosols, NaCl and smoke, and biological aerosols, airborne MS2 virus and P. fluorescens, which implicate that the hybrid-type of air purifier, applying the unipolar ion emission and the radiant catalytic ionization, imposed identical reduction effect on both physical aerosol and bioaerosol. Ventilation decreases the efficiency of air cleaning by unipolar ionization because high ventilation diminishes the particle concentration reduction effect. The particle removal efficiency decreases with increase in the chamber volume because of the augmented ion diffusion and higher ion wall loss rate. Particle size affects the efficiency of air ionization. The efficiency is high for particles with very small diameter because reduction of charge increases with particle size. If there is no increasing supply of ions, the efficiency of air cleaning by unipolar ionization increases with respect to initial concentration of particles because of the large space charge effect at high particle concentration and amplified electric field.

Condensational Growth of Fine Aerosol Particles to Increase Precipitation Efficiency (집진효율 향상을 위한 미세 에어로졸 입자의 응축에 의한 성장 연구)

  • Han, Sang-Woo;Hwang, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.8
    • /
    • pp.1069-1076
    • /
    • 2000
  • As the environmental problems grow, the regulation of the pollutants emitted from power plants increases. Most of the pollutants in particle phase are removed by particle removal facilities, but fine particles between 0.1 micron and I micron in diameter have a low removal efficiency compared to particles in other size ranges. Therefore the present concern has concentrated on the removal of those fine particles. The purpose of this study is to grow fine particles by condensation to the range larger than I micron. Theoretically the general dynamic equation is solved with an assumption that the particle size follows a log-normal distribution to calculate the temporal behavior of the size distribution. Experiments have been carried out to compare the results with the theoretical predictions. Particles grown by condensation are sampled by impactors and observed with SEM photographs.

Removal of Aerosol Through Fibrous Filter as a Function of Particle Size and Velocity (입자의 크기와 유속에 따른 섬유질 여과포에 의한 부유입자 제거 연구)

  • Sang Hoon Lee;Kwan Sik Chun;Hoo Keun Lee
    • Nuclear Engineering and Technology
    • /
    • v.16 no.1
    • /
    • pp.29-35
    • /
    • 1984
  • Filtration efficiency tests were conducted on a fiberglass mat filter with DOP aerosol having a diameter from 0.l${\mu}{\textrm}{m}$ to 0.45${\mu}{\textrm}{m}$ in the face velocity range of 1cm/sec to 10cm/sec. Filtration of submicron particles by a fibrous filter is characterized by a face velocity. The size of DOP aerosol which has a minimum removal efficiency decreases with increasing the velocity. A numerical solution of the diffusion equation is obtained for a fiberglass mat filter by using "Kuwabara's cell model" for the flow field and Von Mises Transformation for the actual flow around a fiberglass. The present theoretical results agree quite well with the experimentals for fiberglass mat. This result could be contributed to predict the removal efficiency on an air filter and to optimize the operating condition of an air purification system with a filter. a filter.

  • PDF

Gas and particle removal characteristics of a novel electrostatic precipitation type air cleaner using an activated carbon filter as an electrode (활성탄 섬유 필터를 전극으로 활용한 정전 방식의 공기정화장치의 가스 및 입자 제거 특성 분석)

  • Lim, Gi-Taek;Kim, Yong-Jin;Han, Bangwoo;Woo, Chang Gyu;Shin, Weon Gyu;Kim, Hak-Joon
    • Particle and aerosol research
    • /
    • v.14 no.1
    • /
    • pp.9-16
    • /
    • 2018
  • We have developed an electrostatic precipitation (ESP) type air cleaner for indoor air quality and investigated its performances regarding CADR (Clean air delivery rate), single-pass efficiency and gas removal efficiency. The ESP air cleaner used an ACF (Activated carbon fiber) filter for gas removal and the ACF as a high voltage electrode for particle removal. The ESP air cleaner was tested in a chamber with the volume of $1m^3$ regarding CADR and gas removal efficiency. The applied CADR area of the ESP was $1.8m^2$. Gas removal efficiency was tested with 3 gases (Acetaldehyde, Acetic acid, Ammonia). As the results of the gas removal efficiency, the ESP air cleaner shows the removal efficiencies of 90, 98 and 85% for acetaldehyde, acetic acid and ammonia, respectively.