• 제목/요약/키워드: Aerosol properties

검색결과 235건 처리시간 0.038초

A Derivation of Aerosol Optical Depth Estimates from Direct Normal Irradiance Measurements

  • Yun Gon Lee;Chang Ki Kim
    • 신재생에너지
    • /
    • 제20권1호
    • /
    • pp.79-87
    • /
    • 2024
  • This study introduces a method for estimating Aerosol Optical Depth (AOD) using Broadband Aerosol Optical Depth (BAOD) derived from direct normal irradiance and meteorological factors observed between 2016 and 2017. Through correlation analyses between BAOD and atmospheric components such as Rayleigh scattering, water vapor, and tropospheric nitrogen dioxide, significant relationships were identified, enabling accurate AOD estimation. The methodology demonstrated high correlation coefficients and low Root Mean Square Errors (RMSE) compared to actual AOD500 measurements, indicating that the attenuation effects of water vapor and the direct impact of tropospheric nitrogen dioxide concentration are crucial for precise aerosol optical depth estimation. The application of BAOD for estimating AOD500 across various time scales-hourly, daily, and monthly-showed the approach's robustness in understanding aerosol distributions and their optical properties, with a high coefficient of determination (0.96) for monthly average AOD500 estimates. This study simplifies the aerosol monitoring process and enhances the accuracy and reliability of AOD estimations, offering valuable insights into aerosol research and its implications for climate modeling and air quality assessment. The findings underscore the viability of using BAOD as a surrogate for direct AOD500 measurements, presenting a promising avenue for more accessible and accurate aerosol monitoring practices, crucial for improving our understanding of aerosol dynamics and their environmental impacts.

에어로솔-구름-강수 상호작용 (CAPI) 연구를 위한 관측 방법론 고찰 (A Review of the Observation-based Framework for the Study of Aerosol-Cloud-Precipitation Interactions (CAPI))

  • 김병곤
    • 대기
    • /
    • 제22권4호
    • /
    • pp.437-447
    • /
    • 2012
  • There is still large uncertainty in estimating aerosol indirect effect despite ever-escalating efforts and virtually exponential increase in published studies concerning aerosol-cloud-precipitation interactions (CAPI). Probably most uncertainty comes from a wide range of observational scales and different platforms inappropriately used, and inherent complex chains of CAPI. Therefore, well-designed field campaigns and data analysis are required to address how to attribute aerosol signals along with clouds and precipitation to the microphysical effects of aerosols. Basically, aerosol influences cloud properties at the microphysical scales, "process scale", but observations are generally made of bulk properties over a various range of temporal and spatial resolutions, "analysis scale" (McComiskey & Feingold, 2012). In the most studies, measures made within the wide range of scales are erroneously treated as equivalent, probably resulting in a large uncertainty in associated with CAPI. Therefore, issues associated with the disparities of the observational resolution particular to CAPI are briefly discussed. In addition, the dependence of CAPI on the cloud environment such as stability and adiabaticity, and observation characteristics with varying situations of CAPI are also addressed together with observation framework optimally designed for the Korean situation. Properly designed and observation-based CAPI studies will likely continue to accumulate new evidences of CAPI, to further help understand its fundamental mechanism, and finally to develop improved parameterization for cloud-resolving models and large scale models.

서울과 고산의 에어로졸 화학성분과 광학특성의 계절변화 (Seasonal Variations of Chemical Composition and Optical Properties of Aerosols at Seoul and Gosan)

  • 이시혜;김영성;김상우;윤순창
    • 한국대기환경학회지
    • /
    • 제24권4호
    • /
    • pp.470-482
    • /
    • 2008
  • Seasonal variations of chemical composition and optical properties of aerosols at Seoul and Gosan were investigated using the ground-based aerosol measurements and an optical model calculation. The mass fraction of elemental carbon was $8{\sim}17%$, but its contribution on light absorption was high up to $29{\sim}48%$ in Seoul. In Gosan, the contribution of water soluble aerosols on aerosol extinction was $83{\sim}94%$ due to the high mass fraction of these particles in the range of $56{\sim}88%$. Model calculation showed that the water holding capacity of aerosols was larger in Gosan than in Seoul because of higher relative humidity and temperature along with abundant water soluble aerosols. Difference between measured and calculated aerosol optical depths was the highest in summer. This was because aerosol optical depth calculated from ground-based measurements could not consider aerosol loadings at high altitude in spite of high column-integrated aerosol loadings observed by Sun photometer. Although hygroscopic growth was expected to be dominant in summer, the mass concentration of water soluble aerosols was too low to permit this growth.

CALIPSO위성 탑재 라이다를 이용한 동북아시아 지역의 대기 에어러솔 3차원 광학특성 분포 (3-D Perspectives of Atmospheric Aerosol Optical Properties over Northeast Asia Using LIDAR on-board the CALIPSO satellite)

  • 이권호
    • 대한원격탐사학회지
    • /
    • 제30권5호
    • /
    • pp.559-570
    • /
    • 2014
  • 위성 탑재 라이다 시스템이 관측하는 후방산란 신호는 대기 에어러솔의 3차원 공간적인 분포 특성 및 시간적인 변화를 탐지할 수 있게 한다. 본 연구에서는 Cloud-Aerosol LIDAR and Infrared Pathfinder Satellite Observation(CALIPSO) 위성에 탑재된 Cloud-Aerosol LIDAR with Orthogonal Polarization(CALIOP) 라이다 관측자료를 이용하여 2012년 한 해 동안의 동북아시아 지역(북위 20도 - 50도, 동경 110 도 - 140 도)의 대기 에어로졸의 시공간 분포를 분석하였다. 입자 소산계수와 편광소멸도의 통계 분석으로부터 각 고도별 에어러솔 입자의 광학 특성정보를 분석하였고, 각 계절별 에어러솔 광학 특성값의 연직분포정보를 정량화할 수 있었다. 또한, 편광소멸도 자료는 연중 0.5 이상의 큰 값을 보이고 있어 지역 대기에는 비구형성 입자에 의한 영향이 많이 받고 있음을 알 수 있었다. 본 연구는 지역적 규모의 3차원 에어러솔 분포 정보에 대한 기초연구로서, 향후 추가 자료 조사를 통하여 보다 다양한 이벤트성 사례와 에어러솔 기후학적 정보를 생산할 것이다.

Development of a Fungal Spore Aerosol Generator: Test with Cladosporium cladosporioides and Penicillium citrinum

  • Lee, Byung-Uk;Kim, Young-Joong;Lee, Chang-Ho;Yun, Sun-Hwa;Bae, Gwi-Nam;Ji, Jun-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권4호
    • /
    • pp.795-798
    • /
    • 2008
  • As the first step to develop efficient means to control fungal spore bioaerosols, we designed, manufactured, and evaluated a fungal spore aerosol generator. We studied the physical and biological properties of the fungal spore bioaerosols on two common fungal species. The results demonstrated that the fungal spore bioaerosol generator effectively produces fungal spore bioaerosols.

산성비 모델을 이용한 시간별 강우성분 예측 (Prediction of Temporal Variation of Son Concentrations in Rainwater)

  • 김순태;홍민선;문수호;최종인
    • 한국대기환경학회지
    • /
    • 제19권2호
    • /
    • pp.191-204
    • /
    • 2003
  • A one dimensional time dependent acid rain model considering size distribution of aerosols and hydrometeors is developed to predict observed chemical and physical properties of precipitation. Temporal variations of anions and cations observed are predicted fairly well with acid rain model simulations. It is found that aerosol depletion rates are highly dependent on aerosol sizes under the assumption of Marshall - Palmer raindrop size distribution. Also, the aerosol depletion during the initial rain event largely influences on ion concentrations in rainwaters.

모멘트 방법을 이용한 에어로즐 모델의 개발과 실험을 통한 검증 (Development of Aerosol Model Using Moment Method and Validation by Experiments)

  • Kim Gyeong-A;Kim Dae-Seong;Park Seong-Hun;Gwon Sun-Park;Lee Gyu-Won
    • 한국대기환경학회:학술대회논문집
    • /
    • 한국대기환경학회 2002년도 추계학술대회 논문집
    • /
    • pp.385-386
    • /
    • 2002
  • Many important physical properties of natural or man-made aerosol particles such as light scattering, electrostatics charges, and toxicity, as well as their behavior involving physical processes like diffusion and thermophoresis depend strongly on their size distribution. Important aerosol behavior mechanisms affecting the size distribution of aerosol particles include condensation, deposition, and coagulation. (omitted)

  • PDF

Aerosol Observation with Raman LIDAR in Beijing, China

  • Xie, Chen-Bo;Zhou, Jun;Sugimoto, Nobuo;Wang, Zi-Fa
    • Journal of the Optical Society of Korea
    • /
    • 제14권3호
    • /
    • pp.215-220
    • /
    • 2010
  • Aerosol observation with Raman LIDAR in NIES (National Institute for Environmental Studies, Japan) LIDAR network was conducted from 17 April to 12 June 2008 over Beijing, China. The aerosol optical properties derived from Raman LIDAR were compared with the retrieved data from sun photometer and sky radiometer observations in the Aerosol Robotic Network (AERONET). The comparison provided the complete knowledge of aerosol optical and physical properties in Beijing, especially in pollution and Asian dust events. The averaged aerosol optical depth (AOD) at 675 nm was 0.81 and the Angstrom exponent between 440 nm and 675 nm was 0.99 during experiment. The LIDAR derived AOD at 532 nm in the planetary boundary layer (PBL) was 0.48, which implied that half of the total AOD was contributed by the aerosol in PBL. The corresponding averaged LIDAR ratio and total depolarization ratio (TDR) were 48.5sr and 8.1%. The negative correlation between LIDAR ratio and TDR indicated the LIDAR ratio decreased with aerosol size because of the high TDR associated with nonspherical and large aerosols. The typical volume size distribution of the aerosol clearly demonstrated that the coarse mode radius located near 3 ${\mu}m$ in dust case, a bi-mode with fine particle centered at 0.2 ${\mu}m$ and coarse particle at 2 ${\mu}m$ was the characteristic size distribution in the pollution and clean cases. The different size distributions of aerosol resulted in its different optical properties. The retrieved LIDAR ratio and TDR were 41.1sr and 19.5% for a dust event, 53.8sr and 6.6% for a pollution event as well as 57.3sr and 7.2% for a clean event. In conjunction with the observed surface wind field near the LIDAR site, most of the pollution aerosols were produced locally or transported from the southeast of Beijing, whereas the dust aerosols associated with the clean air mass were transported by the northwesterly or southwesterly winds.

에어로졸 증착법에 의한 $Al_2O_3$ 박막의 증착 및 특성 평가 (Characterization of $Al_2O_3$, Thin Film Deposited by Aerosol Deposition Method)

  • 조현민;김형준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.24-24
    • /
    • 2007
  • Aerosol deposition(AD) method is a emerging technology for the room temperature deposition of the dielectric thin films with high quality. In this study, $Al_2O_3$ thin films were deposited by aerosol deposition method directly from raw powders. To get uniform and smooth film surface, Process parameters such as gas consumption rate, nozzle-substrate distance and vibration speed were optimized. From XRD results, $Al_2O_3$ thin films have the same crystal structures with starting powders. $Al_2O_3$ thin films also showed dense microstructure. Electrical properties of the thin films were also investigated.

  • PDF

ECMWF/MACC와 OPAC자료를 이용한 시너지 에어로솔 모델 산출 (Derivation of Synergistic Aerosol Model by Using the ECMWF/MACC and OPAC)

  • 이권호;이규태;문관호;김정호;정경진
    • 대한원격탐사학회지
    • /
    • 제34권6_1호
    • /
    • pp.857-868
    • /
    • 2018
  • 특정 지점에서 대기 에어러솔의 미세물리적 특성과 시공간적 분포는 에어로솔 입자의 광학특성을 파악하기 위한 중요한 변수이다. 이러한 에어러솔의 광학특성값에 대한 정확한 산출은 복사전달 모의 과정에서 정확한 값을 제공함으로 중요한 역할을 가지게 된다. 따라서 본 연구는 사용자가 요구하는 시공간적 조건에서 정확한 에어로솔 모델을 산출하기 위한 방법으로서 재분석 자료와 광학 특성 데이터 베이스를 이용한 시너지 에어로솔 모델을 산출하는 방법을 제시하였다. 제안된 시너지 에어로솔 모델은 에어로솔의 주요 성분별 광학두께(Aerosol Optical Depth; AOD)값에 의하여 가중치가 적용된 혼합 에어러솔 형태의 광학 모델을 산출하기 위함이며, $40{\mu}m$까지의 파장영역에서 광학특성값을 제공한다. 주요 에어로솔 이벤트 사례에 대하여, 시너지적 에어러솔 모델(Synergy Aerosol Model; SAM)은 기존의 복사전달 모델에서 사용되고 있는 표준 에어러솔 모델과는 차별적인 결과를 보여주었으며, 지상관측 Aerosol Robotic Network(AERONET) inversion 산출물과의 비교를 통하여 오차범위 내의 정량적인 결과를 가지고 있는 것을 보였다. 따라서, 복사전달 모의에 있어 시너지 에어로솔 모델의 사용은 실제 대기 중 에어러솔에 의한 영향을 정량적으로 평가하는데 도움을 줄 수 있을 것이며, 개선된 복사 모의 결과를 얻을 수 있을 것이다.