• Title/Summary/Keyword: Aerosol coagulation

검색결과 28건 처리시간 0.018초

Experimental and Numerical Study of Aerosol Coagulation by Gravitation (에어로졸 입자의 중력응집에 관한 실험 및 수치적 연구)

  • 권순박;이규원
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제16권1호
    • /
    • pp.1-10
    • /
    • 2000
  • The behavior of aerosos due to gravitational coagulation was studied experimentally and numerically. In experimental study, the geometric mean particel size increased as time elapsed in a vertical tube column, while the size decreased when the tube was set horizontally. The particle size distribution was observed to maintain the lognormal form during the coagulation process. Separately, numerical calculations were performed for studying the aerosol behavior under gravitational and Brownian coagulation using the moment method. By comparing the expeimented results with the numerical predictions, the governing mechanism of the aerosol behavior proved to be gravitational coagulation.

  • PDF

Recent Development of Analytical Solutions to Brownian Aerosol Coagulation in Different Particle Size Regimes

  • Park, Seong-Hun;Kim, Hyun-Tae;Lee, Kyoo-Won
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제15권E호
    • /
    • pp.65-71
    • /
    • 1999
  • The log-normal size distribution theories developed recently for aerosol coagulation are reviewed. The analytical solutiosn to Brownian coagulation developed recently for various particle size regimes are reviewed. In order to describe the evolution of the size distribution of a coagulating aerosol over the entire size range, the analytical solutions developed individually for the free-molecule regime, the transition regime, the nearcontinuum regime, and the continuum regime have been combined. The work described here represents the first analytical solution to the aerosol coagulation problem covering the entire particle size range.

  • PDF

Changes in the Ångstrom Exponent during Aerosol Coagulation and Condensation

  • Jung, Chang H.;Lee, Ji Yi;Kim, Yong P.
    • Asian Journal of Atmospheric Environment
    • /
    • 제6권4호
    • /
    • pp.304-313
    • /
    • 2012
  • In this study, the ${\AA}$ngstrom exponent for polydispersed aerosol during dynamic processes was investigated. Log-normal aerosol size distribution was assumed, and a sensitivity analysis of the ${\AA}$ngstrom exponent with regards the coagulation and condensation process was performed. The ${\AA}$ngstrom exponent is expected to decrease because of the particle growth due to coagulation and condensation. However, it is difficult to quantify the degree of change. In order to understand quantitatively the change in the ${\AA}$ngstrom exponent during coagulation and condensation, different real and imaginary parts of the refractive index were considered. The results show that the ${\AA}$ngstrom exponent is sensitive to changes in size distribution and refractive index. The total number concentration decreases and the geometric mean diameter of aerosols increase during coagulation. On the while, the geometric standard deviation approaches monodispersed size distribution during the condensation process, and this change in size distribution affects the ${\AA}$ngstrom exponent. The degree of change in the ${\AA}$ngstrom exponent depends on the refractive index and initial size distribution, and the size parameter changes with the ${\AA}$ngstrom exponent for a given refractive index or chemical composition; this indicates that the size distribution plays an important role in determining the ${\AA}$ngstrom exponent as well as the chemical composition. Subsequently, this study shows how the ${\AA}$ngstrom exponent changes quantitatively during the aerosol dynamics processes for a log-normal aerosol size distribution for different refractive indices; the results showed good agreement with the results for simple analytic size distribution solutions.

The growth of zinc oxide particles by coagulation in aerosol reactor (에어로졸 반응기에서 산화아연 입자의 응집 성장)

  • Lee, Jong Ho;Song, Shin Ae;Park, Seung Bin
    • Particle and aerosol research
    • /
    • 제4권2호
    • /
    • pp.69-75
    • /
    • 2008
  • Nanosize ZnO particles were prepared by oxidation of zinc vapor and the particle growth was modeled by a coagulation model by assuming that the characteristic time for reaction was much shorter than coagulation time and residence time (${\tau}_{reaction}{\ll}{\tau}_{coagulation}{\ll}{\tau}_{residence}$). Experimental measurement of zinc oxide particles diameter was consistent with the predicted result from the coagulation model. For practical purpose of predicting zinc oxide size in areosol reactor, the constant kernel solution is concluded to be sufficient, Uniqueness of nano-scale property of zinc oxide was confirmed by the higher photocatalytic activity of zinc oxide than nanosize titania particles.

  • PDF

Analysis of Gravitational Coagulation of Aerosol Particles (중력 침강에 의한 입자 응집의 해석적 연구)

  • Jin, Hyeong-A;Jeong, Chang-Hun;Lee, Gyu-Won
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제14권4호
    • /
    • pp.303-312
    • /
    • 1998
  • To obtain the solution to the time-dependent particle size distribution of an aerosol undergoing gravitational coagulation, the moment method was used which converts the non linear integro-differential equation to a set of ordinary differential equations. A semi-numerical solution was obtained using this method. Subsequently, an analytic solution was given by approximating the collision kernel into a form suitable for the analysis. The results show that during gravitational coagulation, the geometric standard deviation increases and the geometric mean radius decreases as time increases.

  • PDF

Particle-size-dependent aging time scale of atmospheric black carbon (입자 크기의 함수로 나타낸 대기 중 블랙카본의 변성시간척도)

  • Park, Sung Hoon
    • Particle and aerosol research
    • /
    • 제5권2호
    • /
    • pp.45-52
    • /
    • 2009
  • Black carbon, which is a by-product of combustion of fossil fuel and biomass burning, is the component that imposes the largest uncertainty on quantifying aerosol climate effect. The direct, indirect and semi-direct climate effects of black carbon depend on its state of the mixing with other water-soluble aerosol components. The process that transforms hydrophobic externally mixed black carbon particles into hygroscopic internally mixed ones is called "aging". In most climate models, simple parameterizations for the aging time scale are used instead of solving detailed dynamics equations on the aging process due to the computation cost. In this study, a new parameterization for the black carbon aging time scale due to condensation and coagulation is presented as a function of the concentration of hygroscopic atmospheric components and the black carbon particle size. It is shown that the black carbon aging time scale due to condensation of sulfuric acid vapors varies to a large extent depending on the sulfuric acid concentration and the black carbon particle size. This result indicates that the constant aging time scale values suggested in the literature cannot be directly applied to a global scale modeling. The aging time scale due to coagulation with internally mixed aerosol particles shows an even stronger dependency on particle size, which implies that the use of a particle-size-independent aging time scale may lead to a large error when the aging is dominated by coagulation.

  • PDF

Effects of coarse mode aerosol on the size distribution by coagulation and condensation processes (응집 및 응축과정에 의한 대기 에어로졸 크기 분포에서의 coarse mode의 영향)

  • 정창훈;김용표;이규원
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 한국대기환경학회 2000년도 춘계학술대회 논문집
    • /
    • pp.158-159
    • /
    • 2000
  • 내기중의 입자 (aerosol)는 크게 직경이 0.01-0.1 $\mu\textrm{m}$ 대의 Aitken mode와 0.1-1 $\mu\textrm{m}$ 부근의 accumulation mode, 그리고 1 $\mu\textrm{m}$ 이상의 coarse mode로 분류할 수 있으며 대기 중에서 부유하여 서로응집(coagulation) 과 응축(condensation)풍의 과정을 겪으며 변화한다. 일반적으로 Aitken mode 의 입자들은 nucleation 둥에 의해 발생된 입자이며, accumulation mode는 Aitken mode입자간의 응집, 인위적인 배출 둥에 의하여 생성된 입자이다. Coarse mode는 주로 자연적으로 생성된 입자이며 주로 침적에 의해 제거된다. (중략)

  • PDF

Development of Simple Bimodal Model for Charged Particle Coagulation (Bimodal 방법을 이용한 하전입자 응집 모델링)

  • Kim, Sang Bok;Song, Dong Keun;Hong, Won Seok;Shin, Wanho
    • Particle and aerosol research
    • /
    • 제10권1호
    • /
    • pp.27-31
    • /
    • 2014
  • A simple bimodal model has been developed to analyze charged particle coagulation by modifying previously suggested bimdal model for evolution of particle generation and growth. In the present model, two monodisperse modes are used and 40 charge nodes are assigned to each mode to account both change of the particle size and charge distribution. In addition, we also implemented the effect of electrostatic dispersion loss in the present model. Based on the developed model, we analyzed coagulation of asymmetric bipolar charged particles by computing evolutions of particle number concentration, geometric mean diameter of particles, charge asymmetric ratio and geometric standard deviation of particle size distribution for various initial charge asymmetric ratios. The number concentration of asymmetric bipolar charged particles decreases faster than that of neutral particles but that does not give faster growth of particles since the electrostatic dispersion loss overwhelms particle growth by coagulation.

Experimental and Numerical Study of Aerosol Coagulation by Gravitation (에어로졸 입자의 중력응집에 관한 실험 및 수치적 연구)

  • 권순박;이규원
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 한국대기환경학회 1999년도 추계학술대회 논문집
    • /
    • pp.119-120
    • /
    • 1999
  • 응집은 입자들간의 상대운동에 의하여 두 입자가 충돌하여 하나의 입자가 되는 것을 말하는데, 상대 운동을 유발하는 원인에 따라 중력응집(gravitational coagulation)을 비롯하여 브라운응집(Brownian coagulation), 난류응집(turbulent coagulation)등으로 나뉜다. 브라운응집 및 난류응집에 비하여 상대적으로 중력응집은 해석적으로 풀기가 어렵고 실험에 대한 연구가 국내외는 물론 외국에서도 전무한 실정이다.(중략)

  • PDF

Development of Aerosol Model Using Moment Method and Validation by Experiments (모멘트 방법을 이용한 에어로즐 모델의 개발과 실험을 통한 검증)

  • Kim Gyeong-A;Kim Dae-Seong;Park Seong-Hun;Gwon Sun-Park;Lee Gyu-Won
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 한국대기환경학회 2002년도 추계학술대회 논문집
    • /
    • pp.385-386
    • /
    • 2002
  • Many important physical properties of natural or man-made aerosol particles such as light scattering, electrostatics charges, and toxicity, as well as their behavior involving physical processes like diffusion and thermophoresis depend strongly on their size distribution. Important aerosol behavior mechanisms affecting the size distribution of aerosol particles include condensation, deposition, and coagulation. (omitted)

  • PDF