• Title/Summary/Keyword: Aerosol Index

Search Result 75, Processing Time 0.026 seconds

The Variation of Radiation Transmittance by the cw 1.07 ㎛ Fiber Laser and Water Aerosol Interaction

  • Koh, Hae Seog;Shin, Wan Soon;Jeon, Min Yong;Park, Byung Suh
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.191-195
    • /
    • 2012
  • Among the atmospheric effect of laser propagation, the variations of the radiation transmittance by water aerosol evaporation have quantitatively been investigated. When the aerosol was exposed by a 1.07 ${\mu}m$ cw fiber laser, the increased amount of the transmittance variation was a maximum of 19.1% and the volume concentration variation of aerosol was observed as an increasing of laser intensity. Also, significant irregularity of refractive index was not found in the heated area during the continuous laser heating.

The Detection of Yellow Sand with Satellite Infrared bands

  • Ha, Jong-Sung;Kim, Jae-Hwan;Lee, Hyun-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.403-406
    • /
    • 2006
  • An algorithm for detection of yellow sand aerosols has been developed with infrared bands. This algorithm is a hybrid algorithm that has used two methods combined. The first method used the differential absorption in brightness temperature difference between $11{\mu}m\;and\;12{\mu}m\;(BTD1)$. The radiation at $11{\mu}m$ is absorbed more than at $12{\mu}m$ when yellow sand is loaded in the atmosphere, whereas it will be the other way around when cloud is present. The second method uses the brightness temperature difference between $3.7{\mu}m\;and\;11{\mu}m(BTD2)$. This technique is sensitive to dust loading, which the BTD2 is enhanced by reflection of $3.7{\mu}m$ solar radiation. First the Principle Component Analysis (PCA), a form of eigenvector statistical analysis from the two methods, is performed and the aerosol pixel with the lowest 10% of the eigenvalue is eliminated. Then the aerosol index (AI) from the combination of BTD 1 and 2 is derived. We applied this method to Multi-functional Transport Satellite-l Replacement (MTSAT-1R) data and obtained that the derived AI showed remarkably good agreements with Ozone Mapping Instrument (OMI) AI and Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth.

Study of Retrieving the Aerosol Size Distribution from Aerosol Optical Depths (에어로졸 광학깊이를 이용한 에어로졸 크기분포 추출 연구)

  • Kim, Dukhyeon
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.4
    • /
    • pp.139-148
    • /
    • 2018
  • In this study, aerosol size distributions were retrieved from aerosol optical depth measured over a range of 10 wavelengths from 250 to 1100 nm. The 10 wavelengths were selected where there is no absorption of atmospheric gases. To obtain the solar spectrum, a home-made solar tracking system was developed and calibrated. Using this solar tracking system, total optical depths (TODs) were extracted for the 10 wavelengths using the Langley plot method, and aerosol optical depths (AODs) were obtained after removing the effects of gas absorption and Rayleigh scattering from the TODs. The algorithm for retrieving aerosol size distributions was suggested by assuming a bimodal aerosol size distribution. Aerosol size distributions were retrieved and compared under various arbitrary atmospheric conditions. Finally, we found that our solar tracking spectrometer is useful for retrieving the aerosol size distribution, even though we have little information about the aerosol's refractive index.

Detection of Wildfire Smoke Plumes Using GEMS Images and Machine Learning (GEMS 영상과 기계학습을 이용한 산불 연기 탐지)

  • Jeong, Yemin;Kim, Seoyeon;Kim, Seung-Yeon;Yu, Jeong-Ah;Lee, Dong-Won;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.967-977
    • /
    • 2022
  • The occurrence and intensity of wildfires are increasing with climate change. Emissions from forest fire smoke are recognized as one of the major causes affecting air quality and the greenhouse effect. The use of satellite product and machine learning is essential for detection of forest fire smoke. Until now, research on forest fire smoke detection has had difficulties due to difficulties in cloud identification and vague standards of boundaries. The purpose of this study is to detect forest fire smoke using Level 1 and Level 2 data of Geostationary Environment Monitoring Spectrometer (GEMS), a Korean environmental satellite sensor, and machine learning. In March 2022, the forest fire in Gangwon-do was selected as a case. Smoke pixel classification modeling was performed by producing wildfire smoke label images and inputting GEMS Level 1 and Level 2 data to the random forest model. In the trained model, the importance of input variables is Aerosol Optical Depth (AOD), 380 nm and 340 nm radiance difference, Ultra-Violet Aerosol Index (UVAI), Visible Aerosol Index (VisAI), Single Scattering Albedo (SSA), formaldehyde (HCHO), nitrogen dioxide (NO2), 380 nm radiance, and 340 nm radiance were shown in that order. In addition, in the estimation of the forest fire smoke probability (0 ≤ p ≤ 1) for 2,704 pixels, Mean Bias Error (MBE) is -0.002, Mean Absolute Error (MAE) is 0.026, Root Mean Square Error (RMSE) is 0.087, and Correlation Coefficient (CC) showed an accuracy of 0.981.

Effects of Aerosol Optical Properties on Upward Shortwave Flux in the Presence of Aerosol and Cloud layers (구름과 에어로솔의 혼재시 에어로솔의 광학특성이 상향 단파 복사에 미치는 영향)

  • Lee, Kwon-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.3
    • /
    • pp.301-311
    • /
    • 2017
  • Aerosol optical properties as well as vertical location of layer can alter the radiative balance of the Earth by reflecting and absorbing solar radiation. In this study, radiative transfer model (RTM) and satellite-based analysis have been used to quantify the top-of-atmosphere (TOA) radiative effect of aerosol layers in the cloudy atmosphere of the northeast Asia. RTM simulation results show that the atmospheric warming effect of aerosols increases with their height in the presence of underlying cloud layer. This relationship is higher for stronger absorbing aerosols and higher surface albedo condition. Over study region ($20-50^{\circ}N$, $110-140^{\circ}E$) and aerosol event cases, it is possible to qualitatively identify absorbing aerosol effects in the presence of clouds by combining the UV Absorbing Aerosol Index (AAI) derived from Total Ozone Mapping Spectrometer (TOMS), cloud parameters derived from the Moderate Resolution Imaging Spectro-radiometer (MODIS), with TOA Upward Shortwave Flux (USF) from the Clouds and the Earth's Radiant Energy System (CERES). As the regional-mean radiative effect of aerosols, 6 - 26 % lower the USF between aerosols and cloud cover is taken into account. These results demonstrate the importance of estimation for the accurate quantification of aerosol's direct and indirect effect.

Comparison of Aerosol Optical Thicknesses by MODIS and MI in Northeast Asia (동북아시아 지역에서 MODIS와 MI에 의한 에어로졸 광학두께 비교)

  • Kim, Eun-kyu;Lee, Kyu-Tae;Jung, Myeong-Jae
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_1
    • /
    • pp.607-615
    • /
    • 2017
  • The aerosol optical thickness data retrieved by Moderate Resolution Imaging Spectrometer (MODIS) of Terra & Aqua and Meteorological Imager (MI) of Communication Ocean and Meteorological Satellite (COMS) are analyzed and compared with the measurement data of Aerosol Robotic Network (AERONET) in Northeast Asia. As the result, the aerosol optical thickness retrieved by MODIS and MI were well agreed at ocean region but quite different at cloud edge and barren surface. The reason was that MODIS aerosol optical thickness was retrieved using the visible and infrared channels but MI was retrieved with the visible channel only. Consequentially, the thin cloud be misinterpreted as aerosol by MI and the difference between MODIS and MI aerosol optical thicknesses could be occurred with Normal Distribution Vegetation Index (NDVI) and land surface property. Therefore, the accuracies of clear/cloud region and surface reflectivity are required in order to improve the aerosol optical thickness algorithm by MI.

Effect of light intensity on the ozone formation and the aerosol number concentration of ambient air in Seoul (광도가 서울 대기의 오존 생성 및 에어로졸 수 농도에 미치는 영향)

  • Bae, Gwi-Nam;Park, Ju-Yeon;Kim, Min Cheol;Lee, Seung-Bok;Moon, Kil-Choo;Kim, Yong Pyo
    • Particle and aerosol research
    • /
    • v.4 no.1
    • /
    • pp.9-20
    • /
    • 2008
  • The effect of light intensity on the ozone formation and the aerosol number concentration during the photochemical reactions of ambient air was investigated in an indoor smog chamber. The smog chamber consists of a housing, 64 blacklights, and a $2.5-m^3$ reaction bag made of Teflon film. The bag was filled with the unfiltered ambient air in Seoul from January 10 to March 18, 2002. In this work, the photolysis rate of $NO_2$, $k_1$ was used as an index of light intensity. Three levels of light intensity were controlled by changing the number of blacklights turned on among 64 blacklights: $0.29min^{-1}$ (50%), $0.44min^{-1}$ (75%), $0.57min^{-1}$ (100%). The ozone concentration increased rapidly within 10 minutes after irradiation irrespective of light intensity, thereafter it increased linearly during the irradiation. The ozone production rate seems to be dependent on both the light intensity and the quality of ambient air introduced into the reaction bag. The change in aerosol number concentration also depended on both the light intensity and the ambient air quality, especially aerosol size distribution. Based on the initial ambient aerosol size distributions, the photochemical potential for aerosol formation and growth is classified into two cases. One is the case showing aerosol formation and growth processes, and the other is the case showing no apparent change in particle size distribution.

  • PDF

Russian Forest Fire Smoke Aerosol Monitoring Using Satellite and AERONET Data (인공위성 자료와 AERONET 관측자료를 이용한 러시아산불 시 발생한 에어로졸의 중장거리 모니터링)

  • 이권호;김영준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.4
    • /
    • pp.437-450
    • /
    • 2004
  • Extensive forest fire activities occurred across the border in Russia, particularly east of Lake Baikal between the Amur and Lena rivers in May 2003. These forest fires released large amounts of particulates and gases into the atmosphere, resulting in adverse effects on regional air quality and the global radiation budget. Smoke pollution from the Russian fires near Lake Baikal was transported to Korea through Mongolia and eastern China. On 20 May 2003, a number of large fires were burning in eastern Russian, producing a thick, widespread pall of smoke over much of Northeast Asia. In this study, separation technique was used for aerosol retrieval application with imagery from MODIS aboard TERRA satellites. MODIS true-color image shows the location of fires and the grayish color of the smoke plumes over Northeast Asia. Aerosol optical thckness (AOT) retrieved from the MODIS data were compared with fire hot spots, ground-based radiation data and TOMS -based aerosol index data. Large AOT, 2.0-5.0 was observed on 20 May 2003 over Korea due to the influence of the long range transport of smoke aerosol plume from the Russian fires, while surface observed fine mode of aerosol size distribution increased.

Study of aerosol-cloud interaction phenomena from satellite remote sensing and climate modeling

  • Nakajima, Teruyuki;Higurashi, Akiko;Kawamoto, Kazuaki;Okamoto, Hajime;Takemura, Toshihiko;Kuroda, Shunsuke
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.100-102
    • /
    • 1999
  • We have analyzed AVHRR global data set for obtaining aerosol and cloud microphysical parameters, i. e., optical thickness and size index of particle polydispersions. From the results, it is found that the cloud optical thickness increases with increasing aerosol column number, which seems to be caused mainly by decreasing cloud particle radius, The cloud liquid water path was observed to be relatively constant without a significant dependence on the aerosol number. Further comparison of the satellite results with a general circulation model simulation.

  • PDF

OPTICAL PROPERTIES OF ASIAN DUST AEROSOL DERIVED FROM SEAWIFS AND LIDAR OBSERVATIONS: A CASE STUDY OF DUST OVER CLOUDS

  • Fukushima, H.;Kobayashi, H.;Murayama, T.;Ohta, S.;Uno, I.
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.367-372
    • /
    • 2002
  • Asian dust aerosol layer of 4-6 km altitude accompanied by low clouds was observed by LIDAR and sky-radiometer in Tokyo urban area on April 10, 2001. To synthesize the top of atmosphere (TOA) reflectance, radiative transfer simulation conducted assuming aerosol/cloud vertical structure and aerosol size distribution that were modeled after the ground observations. The refractive index of Asian dust is derived from a laboratory measurement of sampled Chinese soil particles. The synthesized TOA reflectance is compared to the SeaWiFS-derived one sampled at the low cloud pixels whose airmass is the same as the one passed at the observation site. While the two TOA reflectances compare generally well with few percent difference in reflectance, possible sources of the discrepancy are discussed.

  • PDF