• Title/Summary/Keyword: Aeroelastic Effect

Search Result 65, Processing Time 0.029 seconds

Aeroelastic Analysis of a Wing with Freeplay Considering Effects of Angle-of-Attack (받음각 효과를 고려한 유격이 있는 날개의 공탄성 해석)

  • Kim Jong-Yun;Yoo Jae-Han;Park Young-Keun;Lee In
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.295-300
    • /
    • 2005
  • The freeplay, one of the concentrated structural nonlinearities, is inevitable for control surfaces of a real air vehicle due to normal wear of components and manufacturing mismatches. Also aerodynamic nonlinearities caused by a shock wave occur in transonic region. In practice, these nonlinearities induce the limit cycle oscillation (LCO) and decrease the transonic flutter speed. In this study, the fictitious mass method is used to apply a modal approach to nonlinear structural models due to freeplay. The transonic small-disturbance (TSD) equation is used to calculate unsteady aerodynamic forces in transonic region. Nonlinear aeroelastic time responses are predicted by the coupled time integration method (CTIM). This method was also applied to a 3D all-movable control wing to investigate its nonlinear aeroelastic responses. The angle of attack effect on the LCO characteristics has been found to be closely related with the initial pitching moment.

  • PDF

Flutter Characteristics of Double-Swept Composite Wings (이중 후퇴각을 갖는 복합재 날개의 플러터 특성)

  • Koo, Kyo-Nam
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1228-1233
    • /
    • 2000
  • A new planform of a wing having two sweep angles is proposed to enhance the aeroelastic stability of a swept-forward wing. The double-swept wing has two sweep angles with inboard wing swept-back and outboard wing swept-forward. Aeroelastic analysis is performed with the finite element method to model wing structure and the doublet point method to predict aerodynamic loads. The sweep angle of the inboard wing is varied in this analysis while the outboard wing is swept forward to a pre-selected amount. The results show that the aeroelastic stability can be drastically enhanced by adjusting the sweep angle of the inboard wing. The effect of the fiber orientation in the double-swept composite wing is studied and the proper ply angle is identified to maximize critical speed.

  • PDF

Aeroelastic behavior of nano-composite beam-plates with double delaminations

  • Mousavi, S.B.;Yazdi, Ali A.
    • Steel and Composite Structures
    • /
    • v.33 no.5
    • /
    • pp.653-661
    • /
    • 2019
  • In this paper aeroelastic behavior of 3-phase nano-composite beam-plate with double delaminations is investigated. It is tried to study the effect of carbon nano-tubes (CNTs) on critical flutter pressure of reinforced damaged nano-composite structures. In this case, the CNTs are appending to the polymer matrix uniformly. The Eshelby-Mori-Tanaka model is used to obtain the effective material properties of 3-phase nano-composite beam-plate. To investigate the aeroelastic behavior of delaminated beam-plate subjected to supersonic flow, it is assumed that the damaged segments are forced to vibrate together. The boundary conditions and auxiliary conditions at edges of delaminated segments are used to predict critical flutter pressure. The influence of CNTs and different delamination parameters such as delamination length, axial position and its position through thickness are investigated on critical flutter pressure.

Efficient Aerodynamic Computation of a Wing Model Considering Body Effect for the Aeroelastic Application

  • Lee, Seung-Jun;Im, Dong-Kyun;Lee, In
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.1
    • /
    • pp.14-19
    • /
    • 2009
  • The typical aeroelastic analysis for a complex configuration such as a complete aircraft was done using the aerodynamic results of the wing and the structural modes of a complete aircraft; that is, the aerodynamics of a wing of a complete aircraft is assumed to be not much influenced by the body shape. Nevertheless, the body shape can cause a distortion of aerodynamic pressure on the wing surface and it is necessary to investigate the body effect in flutter analysis. In this reseasrch, MGM inverse design method is applied to include the body effect of a wing-body model which disturbs the pressure distribution on the wing surface.

Study of Critical Flutter Velocities of Bridge Girder Sections with Different Structural Stiffness (구조 강성에 따른 교량 구조물의 임계 플러터 속도 연구)

  • 박성종;권혁준;김종윤;한재흥;이인
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.3
    • /
    • pp.271-278
    • /
    • 2004
  • Numerical analysis of wind effects on civil engineering structures was performed. Aerodynamic effect often becomes a governing factor and aeroelastic stability boundary becomes a prime criterion which should be confirmed during the structural design stage of bridges because the long-span suspension bridges are prone to the aeroelastic instabilities caused by wind. If the wind velocity exceeds the critical velocity that the bridge can withstand, then the bridge fails due to the phenomenon of flutter. Navier-Stokes equations were used for the aeroelastic analysis of bridge girder section. The aeroelastic simulation is carried out to study the aeroelastic stability of bridges using both Computational Fluid Dynamic (CFD) and Computational Structural Dynamic (CSD) schemes. Critical flutter velocities were computed for bridges with different stiffness. It was confirmed that the critical flutter velocity of bridge girder section was sensitive to the change of structural stiffness.

Nonlinear Flow-Induced Vibration Analysis of Typical Section in Supersonic and Hypersonic Flows with Angle-of-Attack Effect (받음각 효과를 고려한 발사체 날개단면의 초음속극초음속 비선형 유체유발진동해석)

  • Kim, Dong-Hyun;Kim, Yu-Sung;Yoon, Myung-Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.12-19
    • /
    • 2007
  • In this study, nonlinear flow-induced vibration(flutter) analyses of a 2-DOF launch vehicle airfoil have been conducted in supersonic and hypersonic flow regimes. Advanced aeroelastic analysis system based on computational fluid dynamics and computational structural dynamics is successfully developed and applied to the present analyses. Nonlinear unsteady aerodynamic analyses considering strong shock wave motions are conducted using inviscid Euler equations. Aeroelastic governing equations for the 2-DOF airfoil system is solved by the coupled integration method with interactive CFD and CSD computation procedures. Typical wedge type airfoil shapes with initial angle-of-attacks are considered to investigate the nonlinear flutter characteristics in supersonic(15). Also, the comparison of detailed aeroelastic responses are practically presented as numerical results.

Characteristics of Transonic Flow-Induced Vibration for a Missile Wing Considering Structural Nonlinearity and Shock Inference Effects (구조 비전형성 및 충격파 간섭효과를 고려한 미사일 날개의 천음속 유체유발 진동특성)

  • Kim, Dong-Hyun;Lee, In;Kim, Seung-Ho;Kim, Tae-Hyoun;Lee, James S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.914-920
    • /
    • 2002
  • Nonlinear flow-induced vibration characteristics of a generic missile wing (or control surface) are investigated in this study. The wing model has freeplay structural nonlinearity at its pitch axis. Nonlinear aerodynamic flows with unsteady shock waves are considered in the transonic flow region. To practically consider the effects of freeplay structural nonlinearity, the fictitious mass method (FMM) is applied to structural vibration analysis based on a finite element method (FEM). A computational fluid dynamics (CFD) technique is used for computing the nonlinear unsteady aerodynamics of all-movable wings. The aerodynamic analysis is based on the efficient transonic small-disturbance aerodynamic equations of motion using the potential-flow theory. To solve the nonlinear aeroelastic governing equations including the freeplay effect, a modal-based computational structural dynamic (CSD) analysis technique based on fictitious mass method (FMM) is used in time-domain. In addition, CSD and unsteady CFD techniques are simultaneously coupled to give accurate computational results. Various aeroelastic computations have been performed for a generic missile wing model. Linear and nonlinear aeroelastic computations have been conducted and the characteristics of flow-induced vibration are introduced.

  • PDF

Prediction of Aeroelastic Displacement Under Close BVI Using Unstructured Dynamic Meshes (비정렬 동적격자를 이용한 블레이드-와류 간섭에 따른 공탄성 변위예측)

  • Jo, Kyu-Won;Oh, Woo-Sup;Kwon, Oh-Joon;Lee, In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.37-45
    • /
    • 2002
  • A two-dimensional unsteady, inviscid flow solver has been developed for the simulation of airfoil-vortex interactions on unstructured dynamically adapted meshes. The Euler solver is based on a second-order accurate implicit time integration using a point Gauss-Seidel relaxation scheme and a dual time-step subiteration. A vertex-centered, finite-volume discretization is used in conjunction with the Roe's flux-difference splitting. An unsteady solution-adaptive dynamic mesh scheme is used by adding and deleting mesh points to take account of both spatial and temporal variations of the flow field. The effect of vortex interaction on the aeroelastic displacement of an airfoil attached to the idealized two degree-of-freedom spring system is investigated.

A comparative study of the models to predict aeroelastic vibrations of circular cylinder and chimneys

  • Rahman, Saba;Jain, Arvind K.;Bharti, S.D.;Datta, T.K.
    • Wind and Structures
    • /
    • v.35 no.1
    • /
    • pp.35-54
    • /
    • 2022
  • A comparative study of aeroelastic vibrations of spring-mass cylinder and chimneys, with the help of a few wake oscillator models available in the literature, is presented. The models include those proposed by Facchinetti, Farshidian and Dolatabadi method-I, Farshidian and Dolatabadi method-II, de Langre, Skop and Griffin. Besides, the linear model proposed by Simiu and Scanlan is also incorporated in the study. For chimneys, the first mode oscillation is considered, and the top displacements of the chimneys are evaluated using the considered models. The results of the analytical model are compared with those obtained from the numerical solution of the wake-oscillator coupled equations. The response behavior of the cylinder and three chimneys of different heights are studied and compared with respect to critical parametric variations. The results of the study indicate that the numerical analysis is essential to capture the effect of non-linear aeroelastic phenomena in the solutions, especially for small damping. Further, except for the models proposed by Farshidian and Dolatabadi, other models predict nearly the same responses. The non-linear model predicts a much higher response as compared to the linear model.

Dynamic Aeroelastic Characteristics of an All-Movable Canard with Oscillating Flap Used in UAV (플랩이 있는 무인기 전운동 카나드의 동적공탄성 특성)

  • Kim, Dong-Hyun;Koo, Kyo-Nam;Lee, In;Kim, Sung-Jun;Kim, Sung-Chan;Lee, Jung-Jin;Choi, Ik-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.6
    • /
    • pp.56-63
    • /
    • 2004
  • In this study, dynamic aeroelastic analyses of the canard with oscillating flap are conducted considering the effect of aerodynamic compressibility. The canard model considered herein is an all-movable type with a pitching axis on a canard-rotor-wing aircraft which was considered as one of the major UAV candidates under developing in Korea. The equivalent structural model is constructed based on the initial design data by the Korea smart UAV development center. Both the frequency and the time-domain aeroelastic analyses have been applied to practically conduct parametric studies on the effects of equivalent torsional stiffness. In the case of all-movable control surface with oscillating flap, the equivalent rotational stiffness of the pitch axes are important design parameters. The parametric results for the aeroelastic instability are practically presented.