• 제목/요약/키워드: Aerodynamics noise

검색결과 58건 처리시간 0.02초

탭이 있는 로터 블레이드의 공력소음에 대한 수치적 연구 (Numerical Investigation of Aerodynamic Noise about Rotor Blade with Tab)

  • 위성용;김도형;정기훈;황창전
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 추계학술대회 논문집
    • /
    • pp.71-74
    • /
    • 2012
  • Generally, tone noise is generated at the rotary wing and helicopter. BVI(Blade-Vortex Interaction) noise is one of the helicopter's tone noise. The BVI noise is governed by tip-vortex characteristics such as vortex size, strength and trajectory. To avoid BVI, many methods have been developed and proposed. In this paper, rotating blade with active tab was numerically investigated to reduce BVI noise. For flow and noise simulation, the lifting surface approach and the acoustic analogy were used. Using numerical methods, the noise directivity and maximum noise position were predicted.

  • PDF

고속철도 차량의 실내소음 해석: SEA 응용 (Analysis of Interior Noise of High-Speed Train via SEA)

  • 김태민;김정태;김정수
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집 특별세미나,특별/일반세션
    • /
    • pp.447-453
    • /
    • 2009
  • The interior noise of the High Speed Train(HST) is analyzed by applying the statistical energy analysis (SEA) method. The interior of each vehicle is divided lengthwise into nine cavities. Since the rolling noise and aerodynamics noise are expected to be dominant noise sources, they are treated as the noise sources in the model. To further simplify the model, curtains and seats are excluded. The simulation runs involving one-car, three-car and five-car trains are conducted. The maximum predicted noise level is 98.4dB. The results also show that the predicted noise levels are within 0.23% of each other. The results imply that it is not necessary to estimate the interior noise of the train by constructing multiple-car train models. The noise estimate based on just one-car train can be optimal with respect to the computational effort and modeling time.

  • PDF

불확정성을 고려한 항공기 구조물의 유체-구조간 상호 간섭 현상의 수치 해석 (Numerical Analysis for Fluid-Structure Interaction in Aircraft Structure Considering Uncertainty)

  • 정찬훈;신상준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.251-257
    • /
    • 2007
  • For the modern aircraft, uncertainty has bee an important issue to its aeroelastic stability. Therefore, many researches have been conducted regarding this topic. The uncertainties in the aeroelastic system amy consist of the structural and aerodynamic uncertainty. In this paper, we suggest a parametric uncertainty modeling and conduct the aeroelastic stability analysis of a typical wing including the uncertainty.

  • PDF

공동을 지나는 비정상 유동에 대한 LES 해석 (LES for unsteady flow past n cavity)

  • 임종수;신동신
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.791-794
    • /
    • 2002
  • Cavity is inevitably included in automobile vehicle configuration. The complex unsteady flow and sound waves generated by the cavity are very important issues because of the involved fluid dynamics and the practical importance in the field of aerodynamics. The LES method used is a conventional one with Smagorinsky eddy-viscosity model and the computational grid is small enough to be handled by workstation-level computers. LES can successfully simulate of cavity noise analysis.

  • PDF

Performance predictions and acoustic analysis of the HVAB rotor in hover

  • Mali, Hajar;Benmansour, Kawtar;Elsayed, Omer;Qaissi, Khaoula
    • Advances in aircraft and spacecraft science
    • /
    • 제9권4호
    • /
    • pp.319-333
    • /
    • 2022
  • This work presents a numerical investigation of the aerodynamics and aero acoustics of the HVAB rotor in hover conditions. Two fully turbulent models are employed, the one-equation Spalart-Allmaras model and the two-equation k-ω SST model. Transition effects are investigated as well using the Langtry-Menter γ-Re θt transition transport model. The noise generation and propagation are being investigated using the Ffows-Williams Hawking model for far-field noise and the broadband model for near-field noise. Comparisons with other numerical solvers and with the PSP rotor test data are presented. The results are presented in terms of thrust and power coefficients, the figure of merit, surface pressure distribution, and Sound pressure level. Velocity, pressure, and vortex structures generated by the rotor are also shown in this work. In addition, this work investigates the contribution of different blade regions to the overall noise levels and emphasizes the importance of considering specific areas for future improvements.

원통형 연소기 내의 저주파 소음특성에 관한 수치적 연구 (Numerical Study on Characteristics of Low-Frequency Noise in a Cylindrical Combustor)

  • 김재헌;이수갑
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1998년도 춘계학술대회논문집; 용평리조트 타워콘도, 21-22 May 1998
    • /
    • pp.492-497
    • /
    • 1998
  • Thermoacoustic oscillation is a significant problem in cylindrical-type combustors such as common internal combustion engines, industrial furnaces, gas turbine, etc. This kind of low frequency oscillation can give rise to serious troubles such as the destruction of system or producing of a strong noise. Accurate numerical simulation of thermoacoustic phenomena is a complex and challenging problem. Especially, considering the reaction of mixture intensifies the difficulty of analysis. Like as other simulations of the aerodynamics and aeroacoustics, direct computation of thermoacoustic phenomena requires that the Navier-Stokes equations be solved using accurate numerical differentiation and time-marching schemes, with non-reflecting boundary conditions. In this study,, numerical approach aims at qualitative analysis and efficient prediction of problem, not at the development of an accurate scheme. Overally speaking, numerical prediction is reasonably matched with experimental result.

  • PDF

Noise Prediction of Ducted Fan Unmanned Aerial Vehicles considering Strut Effect in Hover

  • Park, Minjun;Jang, Jisung;Lee, Duckjoo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권1호
    • /
    • pp.144-153
    • /
    • 2017
  • In recent years, unmanned aerial vehicles (UAVs) have been developed and studied for various applications, including drone deliveries, broadcasting, scouting, crop dusting, and firefighting. To enable the wide use of UAVs, their exact aeroacoustic characteristics must be assessed. In this study, a noise prediction method for a ducted fan UAV with complicated geometry was developed. In general, calculation efficiency is increased by simulating a ducted fan UAV without the struts that fix the fuselage to the ducts. However, numerical predictions of noise and aerodynamics differ according to whether struts are present. In terms of aerodynamic performance, the total thrust with and without struts is similar owing to the tendency of the thrust of a blade to offset the drag of the struts. However, in aeroacoustic simulations, the strut effect should be considered in order to predict the UAV's noise because noise from the blades can be changed by the strut effect. Modelling of the strut effect revealed that the dominant tonal noises were closely correlated with the blade passage frequency of the experimental results. Based on the successful detection of noise sources from a ducted fan UAV system, using the proposed noise contribution contour, methods for noise reduction can be suggested by comparing numerical results with measured noise profiles.

생체모방공학을 적용한 고속철 차간 공간의 공력소음 연구 (Analysis of aerodynamic noise at inter-coach space of high speed trains based on biomimetic analogy)

  • 한재현;김태민;김정수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.711-716
    • /
    • 2011
  • Today, high-speed trains enjoy wide acceptance as fast, convenient and environment-friendly means of transportation. However, increase in the speed of the train entails a concomitant increase in the aerodynamic noise, adversely affecting the passenger comfort. At the train speed exceeding 300 km/h, the effects of turbulent flows and vortex sheddding are greatly amplified, contributing to a significant increase in the aerodynamic noise. Drawing a biomimetic analogy from low-noise flight of owl, a method to reduce aerodynamic noise at inter-coach space of high-speed trains is investigated. The proposed method attempts to achieve the noise reduction by modifying the turbulent flow and vortex shedding characteristics at the inter-coach space. To determine the aerodynamic noise at various train speeds, wind tunnel testing and numerical CFD (Computational Fluid Dynamics) simulation for the basic inter-coach spacing model are carried out, and their results compared. The simulation and experimental results reveal that there are discrete frequency components associated with turbulent air flow at constant intervals in the frequency domain

  • PDF

격자 볼츠만 방법을 이용한 덕트 내 쌍둥이 직렬배열 사각 실린더에 의한 Aeolian 순음소음 고찰 (Investigation Into Aeolian Tone Noise by Twin Tandem Square Cylinders in duct Using Lattice Boltzmann Method)

  • 이송준;정철웅
    • 한국소음진동공학회논문집
    • /
    • 제24권12호
    • /
    • pp.962-968
    • /
    • 2014
  • The lattice Boltzmann method(LBM) has attracted attention as an alternative numerical algorithm for solving fluid mechanics since the end of the 90's. In these days, its intrinsic unsteadiness and rapid increase in computing power make the LBM be more applicable for computing flow-induced noise as well as fluid dynamics. The lattice Boltzmann method is a weakly compressible scheme, so we can get information about both aerodynamics and aeroacoustics from single simulation. In this paper, numerical analysis on Aeolian tone noise generated by tandem-twin square cylinders in duct is performed using the LBM. For simplicity, laminar two-dimensional fluid models are used. To verify the validity and accuracy of the current numerical techniques, numerical results for the laminar duct and the cylinder flows are compared with the analytical solution and the measurement, respectively. Then, aerodynamic noise of the twin tandem square cylinders is investigated. It is shown that the aerodynamic noise from the twin tandem square cylinders can be reduced by controlling the distance between the cylinders.

저속풍동실험 및 유동해석을 통한 고속전철 판토그라프의 유동소음 해석 (Prediction of Aeroacoustics Noise of Pantograph via Low Speed Wind Tunnel Test and Flow Simulation)

  • 조운기;이종수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.1207-1214
    • /
    • 2001
  • The paper deals with the computational approach in analysis and design of pantograph panhead strips of high-speed railway in aerodynamic and aeroacoustic concerns. Pantograph is an equipment such that the electric power is supplied from catenary system to train. Due to the nature of complexity in high-speed fluid flow, turbulence and downstream vortices result in the instability in the aerodynamic contact between panhead strips and catenary system, and consequently generate the considerable levels of flow-induced sound. In this paper, based on the preceding low speed wind-tunnel test and simulations, the aerodynamic and aeroacoustic characteristics in low speed are analyzed.

  • PDF