• 제목/요약/키워드: Aerodynamic prediction

검색결과 276건 처리시간 0.028초

Environmental Noise Prediction using Scale Model: A Measurement Methodology

  • Kim, Tae-Min;Han, Jae-Hyun;Kim, Jeung-Tae
    • International Journal of Railway
    • /
    • 제4권2호
    • /
    • pp.42-49
    • /
    • 2011
  • Today, rolling stock has become a fast and convenient mode of transportation and has witnessed increased demand. But the speed improvement has resulted in increased aerodynamic noise and therefore residential districts near the railroad tracks are exposed to ever increasing noise level. A study on methodologies for measuring and appraising rolling stock's environmental noise has therefore become an important area of endeavor. In the case of the environmental noise, there are no changes in tone so prediction can be made by reducing areas around the railway. The present study explores estimation of the noise around the railway using scale model, and the source of the noise has been investigated as well. The scale model of rolling stock will have to be able to measure high frequency noise and it is required to be generated in a short amount of time. Since popping a balloon or firing a gun fits this requirement the present study analyzed the characteristics of these two different noise sources. Measurement was made in a large vacant lot and the reflection due to the ground was also examined. The method proposed here can be used in the future for predicting the environmental noise of railway vehicles.

Low-fidelity simulations in Computational Wind Engineering: shortcomings of 2D RANS in fully separated flows

  • Bertani, Gregorio;Patruno, Luca;Aguera, Fernando Gandia
    • Wind and Structures
    • /
    • 제34권6호
    • /
    • pp.499-510
    • /
    • 2022
  • Computational Wind Engineering has rapidly grown in the last decades and it is currently reaching a relatively mature state. The prediction of wind loading by means of numerical simulations has been proved effective in many research studies and applications to design practice are rapidly spreading. Despite such success, caution in the use of simulations for wind loading assessment is still advisable and, indeed, required. The computational burden and the know-how needed to run high-fidelity simulations is often unavailable and the possibility to use simplified models extremely attractive. In this paper, the applicability of some well-known 2D unsteady RANS models, particularly the k-ω SST, in the aerodynamic characterization of extruded bodies with bluff sections is investigated. The main focus of this paper is on the drag coefficient prediction. The topic is not new, but, in the authors' opinion, worth a careful revisitation. In fact, despite their great technical relevance, a systematic study focussing on sections which manifest a fully detached flow configuration has been overlooked. It is here shown that the considered 2D RANS exhibit a pathological behaviour, failing to reproduce the transition between reattached and fully detached flow regime.

CFD Prediction of Cavity Drag at Transonic and Low Supersonic Speeds

  • 김희동;구병수;우선훈
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2000년도 제14회 학술강연논문집
    • /
    • pp.18-18
    • /
    • 2000
  • In the high lift devices specifications for surface smoothness requirements, as manufacturing tolerances, arise out of aerodynamic consideration to minimize drag. True optimization of tolerances is a multi-disciplinary problem involving fluid mechanics, device performance, manufacturing philosophy and life cycle costing. One of the reasons for degradation of wetted surface is discrete roughness as a consequence of manufacturing defects, collectively termed as one of the excrescences effect. Usually, excrescence drag arising out of discrete roughness is of considerable lower order of magnitude as compared to the total drag of the flight bodies. Nor was there adequate predicting tool to account for the extent of drag degradation. Estimation of excrescence drag remained as a state-of-the art based on experimental results.

  • PDF

프로펠러형 팬의 날개형상에 따른 전산 해석적 연구 (Computational study on flows by propeller fans with different blades)

  • 이정민;김재원
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2000년도 추계 학술대회논문집
    • /
    • pp.163-169
    • /
    • 2000
  • Design and developments of a propeller fan for a cooling tower have been accomplished by both numerical prediction of performance and experimental validation with a wind tunnel, Main interest lies on blade geometry of a fan for optimal design of aerodynamic performance. The present methodology for numerical estimation is commercial program, Fine/Turbo, which gives us engineering information such as flow details near the blades and flow rate of it. The numerical results are compared with precise experimental output and show good agreement. Also new proposed model of a blade with the program show improved performance relative to present running model in market.

  • PDF

요트 세일의 성능에 관한 수치해석 및 실험 (Evaluation of Yacht Sails Performance by CFD and Experiments)

  • 유재훈;안해성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권1호
    • /
    • pp.125-133
    • /
    • 2006
  • It is important to understand flow characteristics and performances of sails for both sailors and designers who want to have efficient thrust of yacht In this Paper the viscous flows around sail-like rigid wings, which are similar to main and jib sails of a 30 feet sloop, are calculated using a CFD tool. Lift, drag and thrust forces are estimated for various conditions of gap distance between the two sails and the center of effort of the sail system is obtained. Wind tunnel experiments are also carried out to measure aerodynamic forces acting on the sails system and to validate the computation. It is found that the combination of two sails produces the lift force larger than the sum of that produced separately by each sail and the gap distance between the two sails is an important factor to determine total lift and thrust.

지열 히트 펌프시스템용 터보 압축기 개발 (Development of the Turbo Compressor for a Geothermal Heat-Pump System)

  • 박준영;박무룡;최상규;윤의수;황순찬
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1395-1400
    • /
    • 2004
  • A centrifugal compressor for geothermal heat pump system using R134a as working fluid has been developed. The centrifugal compressor consists of an impeller with splitters, two vaneless diffuser, a low solidity vaned diffuser and a volute. In this compressor, diffuser blade angles are controlled to satisfy both heating and cooling conditions. A aerodynamic design was done by applying the repeating design procedure including a meanline design, a 3D geometry generation and fluid dynamic calculation. In this paper, design and performance prediction results of the compressor are presented.

  • PDF

저 레이놀즈수 유동장에서의 난류모델에 관한 연구 (The Study of Turbulence Model of Low-Reynolds Number Flow)

  • 유철;이정상;김종암;노오현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 춘계 학술대회논문집
    • /
    • pp.172-177
    • /
    • 2004
  • In the present work, we have interests on the modification of parallel implemented with MPI(Message Passing Interface) programming method, 3-Dimensional, unsteady, incompressible Navier-Stokes equation solver to analyze the low-Reynolds number flow In order to accurate calculation aerodynamic coefficients in low-Reynolds number flow field, we modified the two-equation turbulence model. This paper describes the development and validation of a new two-equation model for the prediction of flow transition. It is based on Mentor's low Reynolds $\kappa-\omega$ model with modifications to include Total Stresses Limitation (TSL) and Separation Transition Trigger (STT)

  • PDF

Development of a Simulator of a Magnetic Suspension and Balance System

  • Lee, Dong-Kyu;Lee, Jun-Seong;Han, Jae-Hung;Kawamura, Yoshiyuki;Chung, Sang-Joon
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제11권3호
    • /
    • pp.175-183
    • /
    • 2010
  • The increased demand for a higher performing magnetic suspension and balance system (MSBS) resulted in an increase in costs for the efforts necessary for achieving an improved MSBS. Therefore, MSBS performance should be predicted during the design in order to reduce risk. This paper presents the modeling and simulation of an MSBS that controls 6-degree of freedom (DOF) of an aerodynamic body within the MSBS. Permanent magnets and electromagnets were modeled as coils, and this assumption was verified by experimental results. Finally, an MSBS simulator was developed, predicting that the MSBS is able to contain the model within a bounded region as well as measure external forces acting on the body during wind tunnel tests.

Assessment of Rotor Hover Performance Using a Node-based Flow Solver

  • Jung, Mun-Seung;Kwon, Oh-Joon;Kang, Hee-Jung
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제8권2호
    • /
    • pp.44-53
    • /
    • 2007
  • A three-dimensional viscous flow solver has been developed for the prediction of the aerodynamic performance of hovering helicopter rotor blades using unstructured hybrid meshes. The flow solver utilized a vertex-centered finite-volume scheme that is based on the Roe's flux-difference splitting with an implicit Jacobi/Gauss-Seidel time integration. The eddy viscosity are estimated by the Spalart- Allmaras one-equation turbulence model. Calculations were performed at three operating conditions with varying tip Mach number and collective pitch setting for the Caradonna-Tung rotor in hover. Additional computations are made for the UH-60A rotor in hover. Reasonable agreements were obtained between the present results and the experiment in both blade loading and overall rotor performance. It was demonstrated that the present vertex-centered flow solver is an efficient and accurate tool for the assessment of rotor performance in hover.

Prediction of Transonic Buffet Onset for a Supercritical Airfoil with Shock-Boundary Layer Interactions Using Navier-Stokes Solver

  • Chung, Injae
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권1호
    • /
    • pp.1-7
    • /
    • 2017
  • To predict the transonic buffet onset for a supercritical airfoil with shock-boundary layer interactions, a practical steady approach has been proposed. In this study, it is assumed that the airfoil flow is steady even when buffet onset occurs. Steady Navier-Stokes computations are performed on the supercritical airfoil. Using the aerodynamic parameters calculated from Navier-Stokes solver, various steady approaches for predicting buffet onset are discussed. Among the various steady approaches considered in this study, Thomas' criterion based on Navier-Stokes computation has shown to be the most appropriate indicator of identifying the buffet onset for a supercritical airfoil with shock-boundary layer interactions. Good agreements have been obtained compared with the results of unsteady transonic wind tunnel tests. The present method is shown to be reliable and useful for transonic buffet onset for a supercritical airfoil with shock-boundary layer interactions in terms of practical engineering viewpoint.