• Title/Summary/Keyword: Aerodynamic noise

Search Result 367, Processing Time 0.03 seconds

Determination of taxiing resistances for transport category airplane tractive propulsion

  • Daidzic, Nihad E.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.6
    • /
    • pp.651-677
    • /
    • 2017
  • For the past ten years' efforts have been made to introduce environmentally-friendly "green" electric-taxi and maneuvering airplane systems. The stated purpose of e-taxi systems is to reduce the taxiing fuel expenses, expedite pushback procedures, reduce gate congestion, reduce ground crew involvement, and reduce noise and air pollution levels at large airports. Airplane-based autonomous traction electric motors receive power from airplane's APU(s) possibly supplemented by onboard batteries. Using additional battery energy storages ads significant inert weight. Systems utilizing nose-gear traction alone are often traction-limited posing serious dispatch problems that could disrupt airport operations. Existing APU capacities are insufficient to deliver power for tractive taxiing while also providing for power off-takes. In order to perform comparative and objective analysis of taxi tractive requirements a "standard" taxiing cycle has been proposed. An analysis of reasonably expected tractive resistances has to account for steepest taxiway and runway slopes, taxiing into strong headwind, minimum required coasting speeds, and minimum acceptable acceleration requirements due to runway incursions issues. A mathematical model of tractive resistances was developed and was tested using six different production airplanes all at the maximum taxi/ramp weights. The model estimates the tractive force, energy, average and peak power requirements. It has been estimated that required maximum net tractive force should be 10% to 15% of the taxi weight for safe and expeditious airport movements. Hence, airplanes can be dispatched to move independently if the operational tractive taxi coefficient is 0.1 or higher.

An Experimental Study on the Effect of Vortex-Type Applied to Design an Axial Flow Fan (축류송풍기의 설계시 적용된 와류형식의 영향에 관한 실험적 연구)

  • Cho, Soo-Yong;Choi, Bum-Seog;Oh, Jong-Hak
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.3 s.4
    • /
    • pp.7-16
    • /
    • 1999
  • The flow angle at the inlet and exit of a rotor or stator is an important design parameter involved in the design a fan blade. Flow angles along the radial direction for 3-D stacking are calculated using two kinds of vortex methods, i.e. free vortex method and forced vortex method. The performance test shows that a fan designed by the free vortex method is more efficient than a fan designed by the forced vortex method. As a reference, an imported fan is tested. Even though the straightner of the imported fan is used for the comparison test, the difference of efficiency between the imported fan and the fan designed by the free vortex method is negligible. The noise of the fan designed by the free vortex method is less than that of the imported fan. A bellmouth installed at the fan inlet improved the fan efficiency more than $10\%$.

  • PDF

Theoretical study on compression wave propagating in a sudden reduction duct (급축소관을 전파하는 압축파에 관한 이론적 연구)

  • Kim, Hui-Dong;Kim, Tae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.89-98
    • /
    • 1997
  • Compression waves propagating in a high speed railway tunnel impose large pressure fluctuations on the train body or tunnel structures. The pressure fluctuations can cause ear discomfort for the passengers and increase the aerodynamic resistance of trains. As a fundamental research to resolve the pressure wave phenomenon in the tunnel, a steady theory of Chester-Chisnell- Whitham was applied to a simple shock tube with a sudden cross-sectional area reduction to model trains inside the tunnel. The results of the present theoretical analysis were compared with the experiments of the shock tube. The results show that the reflected compression wave from the model becomes stronger as the strength of incident compression wave and the blockage ratio increase. However, the compression wave passing through the model is not strongly dependent on the blockage ratio. The theoretical results are in good agreement with the experiments.

An Experimental Study on the Frequency Characteristics of Hole Tones Generated by a Circular Jet of Low Speed Impinging on a Plate with a Round Hole (저속의 원형분류가 구멍에 충돌할 때 발생한 구멍음의 주파수특성에 관한 실험적 연구)

  • 이동훈
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.2
    • /
    • pp.34-41
    • /
    • 1997
  • The objective of this study is to investigate experimentally the frequency characteristics of the hole tones generated by a circular jet of low speed impinging on a plate with a round hole. The experimental results about the sound spectrum and the time wave of the hole tone are presented and discussed in relation with the hole type, the jet velocity and the distance of the nozzle-to-plate with a round hole. From the sound spectrum and time wave measurements, it is found that the hole tone is generated not only by an interaction of convected vortices with a round hole but also by a series of vortex shedding from jets passing through a hole. The hole tones generated by a feedback mechanism consist of many frequency stages and also have a hysteresis phenomenon like an edge tone. But the hole tones generated by a series of vortex shedding have nothing with the stage characteristics. The frequencies of hole tones are influenced by the jet velocity, the distance of the nozzle-to-plate with a round hole and the hole type.

  • PDF

Numerical Analysis on the Blade Tip Clearance Flow in the Axial Rotor (II) - Variation of Leakage Vortex with Tip Clearance and Attack Angle - (축류 회전차 익말단 틈새유동에 대한 수치해석(II) - 틈새변화 및 영각변화에 따른 누설와류의 변화 -)

  • Ro, Soo-Hyuk;Cho, Kang-Rae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.9
    • /
    • pp.1106-1112
    • /
    • 1999
  • Substantial losses behind axial flow rotor are generated by the wake, various vortices in the hub region and the tip leakage vortex in the tip region. Particularly, the leakage vortex formed near blade tip is one of the main causes of the reduction of performance, generation of noise and aerodynamic vibration in downstream. In this study, the three-dimensional flow fields in an axial flow rotor were calculated with varying tip clearance under various flow rates, and the numerical results were compared with experimental ones. The numerical technique was based on SIMPLE algorithm using standard $k-{\varepsilon}$ model(WFM) and Launder & Sharma's Low Reynolds Number $k-{\varepsilon}$ model(LRN). Through calculations, the effects of tip clearance and attack angle on the 3-dimensional flow fileds behind a rotor and leakage flow/vortex were investigated. The presence of tip leakage vortex, loci of vortex center and its behavior behind the rotor for various tip clearances and attack angles was described well by calculation.

Numerical Analysis of a Turbine Rotor Cascade with Unsteady Passing Wakes (비정상 후류를 지나는 터빈 동익 주위의 유동장 수치해석)

  • Lee, Eun-Seok
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.153-156
    • /
    • 2006
  • A turbine stage consists of a stator and rotor. A stator provides the required inlet flow conditions so that a rotor can produce the necessary power. Passing wakes generated at the trailing edge of a stator make an interaction with a rotor. In the present study, this interaction flow mechanism is investigated using the numerical analysis. In case of the large gap distance between the stator and rotor, the stator and rotor flow analysis can be separated. First, only the stator flow field is solved. Second, the rotor flow field is solved including the passing wake information from the stator analysis. The passing wake experiences the shearing as it approaches to the rotor leading edge. And it is chopped when it strikes the rotor body. After that, the chopped wakes becomes the prolongation as it goes downstream. Also, the aerodynamic characteristics with the variation of the gap distance between a stator and rotor was investigated. Pressure jumps due to the passing wakes result in the pressure and lift loss and it gets stronger with the closer gap distance. This unsteady effect proves to be directly related to the fatigue and noise in turbomachinery and this study would be helpful to investigate such fields.

  • PDF

Experimental study on compression wave propagating in a sudden reduction duct (급축소관을 전파하는 압축파에 관한 실험적 연구)

  • Kim, Hui-Dong;Matsuo, Kazuyasu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.9
    • /
    • pp.1139-1148
    • /
    • 1997
  • Compression waves propagating in a high-speed railway tunnel develops large pressure fluctuations on the train body or tunnel structures. The pressure fluctuations would cause an ear discomfort for the passengers and increase the aerodynamic resistance of trains. As a fundamental research to resolve the pressure wave phenomenon in the tunnel, experiments were carried out by using a shock tube with an open end. A blockage to model trains inside the tunnel was installed on the lower wall of shock tube, thus forming a sudden cross-sectional area reduction. The compression waves were obtained by the fast opening gate valve instead of a conventional diaphragm of shock tube and measured by the flush mounted pressure transducers with a high sensitivity. The experimental results were compared with the previous theoretical analyses. The results show that the ratio of the reflected to the incident compression wave at the sudden cross-sectional area reduction increases but the ratio of the passing to the incident compression wave decreases, as the incident compression wave becomes stronger. This experimental results are in good agreements with the previous theoretical ones. The maximum pressure gradient of the compression wave abruptly increases but the width of the wave front does not vary, as it passes over the sudden cross-sectional area reduction.

Study of Shock Tube for Wave Phenomenon in High Speed Railway Tunnel(1) - On the characteristics of Compression Wave - (고속철도 터널에서 발생하는 파동현상에 관한 충격파관의 연구(1) - 압축파의 특성에 대하여 -)

  • ;松尾一泰
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2686-2697
    • /
    • 1994
  • When a railway train enters a tunnel at high speed, a compression wave is formed in front of the train and propagates along the tunnel. The compression wave subsequently emerges from the exit of the tunnel, which causes an impulsive noise. In order to estimate the magnitudes of the noises and to effectively minimize them, the characteristics of the compression wave propagating in a tunnel must be understood. In the present paper, the experimental and analytical investigations on the attenuation and distortion of the propagating compression waves were carried out using a model tunnel. This facility is a kind of open-ended shock tube with a fast-opening gate valve instead of a general diaphragm. One-dimensional flow model employed in the present study could appropriately predict the strength of the compression wave, Mach number and flow velocity induced by the compression wave. The experimental results show that the strength of a compression wave decreases with the distance from the tunnel entrance. The decreasing rate of the wave strength and pressure gradient in the wave is strongly dependent on the strength of the initial compression wave at the tunnel entrance.

축류회전차 익말단 틈새유동에 대한 수치해석

  • No, Su-Hyeok;Jo, Gang-Rae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.3
    • /
    • pp.336-345
    • /
    • 1998
  • The substantial loss behind axial flow rotor was generated by wake, various vortices in the hub region and the leakage vortex in the tip region. Particularly, the leakage vortex formed near blade tip was one of the main causes of the reduction of performance, the generation of noise and the aerodynamic vibration in rotor downstream. In this study, the three-dimensional flowfields in an axial flow rotor for various tip clearances were calculated, and the numerical results were compared with the experimental ones. The numerical technique was based on SIMPLE algorithm using standard k-.epsilon. model (WFM). Through calculations, the effects of the tip clearance on the overall performance of rotor and the loss distributions, and the increase in the displacement, momentum, and blade-force-deficit thickness of the casing wall boundary layer were investigated. The mass-averaged flow variables behind rotor agreed well with the experimental results. The presence of the tip leakage vortex behind rotor was described well. Although the loci of leakage vortex by calculation showed some differences compared with the experimental results, its behavior for various tip clearances was clarified by examining the loci of vortex center.

Quantitative Measurement of the Glottal Area Waveform(GAW) in Unilateral Vocal Fold Paralysis (편측성대마비환자에서의 성문면적파형(Glottal Area Waveform)의 정량적 측정)

  • 최홍식;김명상;최재영;안성윤;이세영;홍정표
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.9 no.1
    • /
    • pp.71-78
    • /
    • 1998
  • Type Ⅰ thyuroplasty in conjunction with arytenoid adduction is one of the excellent techniques in the treatment of unilateral vocal fold paralysis. But perioperative objective evaluation of the patients is difficult. With the development of the videostroboscopy and image analysis program, we could quantify the Glottal Area Waveform(GAW) in patients with unilateral vocal fold paralysis and investigated the relationship between the glottal area and aerodynamic and acoustic parameters. Eight female patients who were performed type Ⅰ thyroplasty in conjunction with arytenoid adduction and 5 females with normal vocal function were involved in this study. Preoperative and postoperative videostroboscopy and vocal function study wire performed. GAW was analysed quantitatively with image analysis program (Kay Stroboscope Image analysis, KSIP) Peak Glottal Area(PGA), Baseline Offset(BO), and Closing Phase(CP) were increased in patients with unilateral vocal fold paralysis and they were reduced after the operation. Mean flow Rate (MFR) was well correlated with the PGA in normal control group and unilateral vocal fold paralysis patients. Noise to harmonic ratio(NHR) was correlated with PGA only in preoperative unilateral vocal fold paralysis patients. In conclusion quantitative measurement of the GAW is useful method in evaluation of unilateral vocal f31d paralysis patients.

  • PDF