• 제목/요약/키워드: Aerodynamic derivatives identification

검색결과 12건 처리시간 0.016초

Aerodynamic Derivatives Identification Using a Non-Conservative Robust Kalman Filter

  • Lee, Han-Sung;Ra, Won-Sang;Lee, Jang-Gyu;Song, Yong-Kyu;Whang, Ick-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권1호
    • /
    • pp.132-140
    • /
    • 2012
  • A non-conservative robust Kalman filter (NCRKF) is applied to flight data to identify the aerodynamic derivatives of an unmanned autonomous vehicle (UAV). The NCRKF is formulated using UAV lateral motion data and then compared with results from the conventional Kalman filter (KF) and the recursive least square (RLS) method. A superior performance for the NCRKF is demonstrated by simulation and real flight data. The NCRKF is especially effective in large uncertainties in vehicle modeling and in measuring flight data. Thus, it is expected to be useful in missile and aircraft parameter identification.

Identification of flutter derivatives of bridge decks using CFD-based discrete-time aerodynamic models

  • Zhu, Zhiwen;Gu, Ming
    • Wind and Structures
    • /
    • 제18권3호
    • /
    • pp.215-233
    • /
    • 2014
  • This paper presents a method to extract flutter derivatives of bridge decks based on a combination of the computational fluid dynamics (CFD), system simulations and system identifications. The incompressible solver adopts an Arbitrary Lagrangian-Eulerian (ALE) formulation with the finite volume discretization in space. The imposed sectional motion in heaving or pitching relies on exponential time series as input, with aerodynamic forces time histories acting on the section evaluated as output. System identifications are carried out to fit coefficients of the inputs and outputs of ARMA models, as to establish discrete-time aerodynamic models. System simulations of the established models are then performed as to obtain the lift and moment exerting on the sections to a sinusoidal displacement. It follows that flutter derivatives are identified. The present approaches are applied to a hexagon thin plate and a real bridge deck. The results are compared to the Theodorsen closed-form solution and those from wind tunnel tests. Satisfactory agreements are observed.

Determination of flutter derivatives by stochastic subspace identification technique

  • Qin, Xian-Rong;Gu, Ming
    • Wind and Structures
    • /
    • 제7권3호
    • /
    • pp.173-186
    • /
    • 2004
  • Flutter derivatives provide the basis of predicting the critical wind speed in flutter and buffeting analysis of long-span cable-supported bridges. In this paper, one popular stochastic system identification technique, covariance-driven Stochastic Subspace Identification(SSI in short), is firstly presented for estimation of the flutter derivatives of bridge decks from their random responses in turbulent flow. Secondly, wind tunnel tests of a streamlined thin plate model and a ${\Pi}$ type blunt bridge section model are conducted in turbulent flow and the flutter derivatives are determined by SSI. The flutter derivatives of the thin plate model identified by SSI are very comparable to those identified by the unifying least-square method and Theodorson's theoretical values. As to the ${\Pi}$ type section model, the effect of turbulence on aerodynamic damping seems to be somewhat notable, therefore perhaps the wind tunnel tests for flutter derivative estimation of those models with similar blunt sections should be conducted in turbulent flow.

비행시험을 통한 가로/방향 정적 미계수 추정에 관한 연구

  • 김응태;성기정;김영철;강상진
    • 항공우주기술
    • /
    • 제2권1호
    • /
    • pp.22-28
    • /
    • 2003
  • 본 논문은 소형 커나드 항공기의 정안전성 비행 시험을 통해 얻어진 자료를 분석해 정적 공력 미계수를 추정하는 방법을 제시하였다. 최대공산추정법을 통해 얻어진 공력 미계수와 본 논문에서 제시된 방법을 통해 얻어진 결과를 함께 비교하여 정확성을 검증하였다. 제시된 계수 추정 방법을 통해, 제한된 비행시험 자료만으로도 신뢰할 수 있는 공력 미계수를 추정할 수 있었다. 그 결과, 제시된 방법은 비행시험 데이터 해석에 보편적으로 사용되는 최대공산추정법과 같은 파라미터 식별기법의 결과를 검증, 보완할 수 있는 기준 데이터를 제공할 수 있다.

  • PDF

Vortex induced vibration and flutter instability of two parallel cable-stayed bridges

  • Junruang, Jirawat;Boonyapinyo, Virote
    • Wind and Structures
    • /
    • 제30권6호
    • /
    • pp.633-648
    • /
    • 2020
  • The objective of this work was to investigate the interference effects of two-parallel bridge decks on aerodynamic coefficients, vortex-induced vibration, flutter instability and flutter derivatives. The two bridges have significant difference in cross-sections, dynamic properties, and flutter speeds of each isolate bridge. The aerodynamic static tests and aeroelastic tests were performed in TU-AIT boundary layer wind tunnel in Thammasat University (Thailand) with sectional models in a 1:90 scale. Three configuration cases, including the new bridge stand-alone (case 1), the upstream new bridge and downstream existing bridge (case 2), and the downstream new bridge and the upstream existing bridge (case 3), were selected in this study. The covariance-driven stochastic subspace identification technique (SSI-COV) was applied to identify aerodynamic parameters (i.e., natural frequency, structural damping and state space matrix) of the decks. The results showed that, interference effects of two bridges decks on aerodynamic coefficients result in the slightly reduction of the drag coefficient of case 2 and 3 when compared with case 1. The two parallel configurations of the bridge result in vortex-induced vibrations (VIV) and significantly lower the flutter speed compared with the new bridge alone. The huge torsional motion from upstream new bridge (case 2) generated turbulent wakes flow and resulted in vertical aerodynamic damping H1* of existing bridge becomes zero at wind speed of 72.01 m/s. In this case, the downstream existing bridge was subjected to galloping oscillation induced by the turbulent wake of upstream new bridge. The new bridge also results in significant reduction of the flutter speed of existing bridge from the 128.29 m/s flutter speed of the isolated existing bridge to the 75.35 m/s flutter speed of downstream existing bridge.

Effects of frequency ratio on bridge aerodynamics determined by free-decay sectional model tests

  • Qin, X.R.;Kwok, K.C.S.;Fok, C.H.;Hitchcock, P.A.
    • Wind and Structures
    • /
    • 제12권5호
    • /
    • pp.413-424
    • /
    • 2009
  • A series of wind tunnel free-decay sectional model dynamic tests were conducted to examine the effects of torsional-to-vertical natural frequency ratio of 2DOF bridge dynamic systems on the aerodynamic and dynamic properties of bridge decks. The natural frequency ratios tested were around 2.2:1 and 1.2:1 respectively, with the fundamental vertical natural frequency of the system held constant for all the tests. Three 2.9 m long twin-deck bridge sectional models, with a zero, 16% (intermediate gap) and 35% (large gap) gap-to-width ratio, respectively, were tested to determine whether the effects of frequency ratio are dependent on bridge deck cross-section shapes. The results of wind tunnel tests suggest that for the model with a zero gap-width, a model to approximate a thin flat plate, the flutter derivatives, and consequently the aerodynamic forces, are relatively independent of the torsional-to-vertical frequency ratio for a relatively large range of reduced wind velocities, while for the models with an intermediate gap-width (around 16%) and a large gap-width (around 35%), some of the flutter derivatives, and therefore the aerodynamic forces, are evidently dependent on the frequency ratio for most of the tested reduced velocities. A comparison of the modal damping ratios also suggests that the torsional damping ratio is much more sensitive to the frequency ratio, especially for the two models with nonzero gap (16% and 35% gap-width). The test results clearly show that the effects of the frequency ratio on the flutter derivatives and the aerodynamic forces were dependent on the aerodynamic cross-section shape of the bridge deck.

Identification of flutter derivatives from full-scale ambient vibration measurements of the Clifton Suspension Bridge

  • Nikitas, Nikolaos;Macdonald, John H.G.;Jakobsen, Jasna B.
    • Wind and Structures
    • /
    • 제14권3호
    • /
    • pp.221-238
    • /
    • 2011
  • The estimated response of large-scale engineering structures to severe wind loads is prone to modelling uncertainties that can only ultimately be assessed by full-scale testing. To this end ambient vibration data from full-scale monitoring of the historic Clifton Suspension Bridge has been analysed using a combination of a frequency domain system identification method and a more elaborate stochastic identification technique. There is evidence of incipient coupling action between the first vertical and torsional modes in strong winds, providing unique full-scale data and making this an interesting case study. Flutter derivative estimation, which has rarely previously been attempted on full-scale data, was performed to provide deeper insight into the bridge aerodynamic behaviour, identifying trends towards flutter at higher wind speeds. It is shown that, as for other early suspension bridges with bluff cross-sections, single-degree-of-freedom flutter could potentially occur at wind speeds somewhat below requirements for modern designs. The analysis also demonstrates the viability of system identification techniques for extracting valuable results from full-scale data.

실시간 조종미계수 추정에 의한 무인비행기 조종면 고장검출 (Real-Time Estimation of Control Derivatives for Control Surface Fault Detection of UAV)

  • 이환;김응태;최형식;최지영;이상기
    • 한국항공우주학회지
    • /
    • 제35권11호
    • /
    • pp.999-1005
    • /
    • 2007
  • 공력미계수에 대한 실시간 추정은 비정상적인 조종면 작동의 경우, 고장에 대한 정보를 분석하여 비행임무를 계속 수행하거나 본부로 회항비행을 지속할 수 있도록 하는 재형상 제어를 위해 필요하다. 본 논문에서는 고장허용제어시스템에 대한 기반 연구로서 무인비행기 안전성 향상을 위하여 조종면 작동불능과 같은 고장에 대해 검출 방법을 제시하였다. 조종면 고장검출을 위한 실시간 시스템식별 알고리듬은 퓨리에 변환기법을 사용하였으며 프로그램 성능 및 검증을 위해 HILS 시험을 수행하였다. 고장 조종면은 피칭모멘트, 요잉모멘트, 롤링모멘트에 대한 조종면 효과를 나타내는 조종미계수들을 실시간 추정하여 정상상태의 값과 비교하여 검출된다. 비행시험 결과를 통해 고장상태의 조종미계수 값은 정상상태의 값보다 작다는 것을 정량적으로 확인하였다.

비행시험을 통한 소형 커나드항공기의 비행 특성 연구 (A Study on a Small Canard Aircraft Flight Characteristics through Flight Test)

  • 김용태;성기정
    • 한국항공우주학회지
    • /
    • 제30권6호
    • /
    • pp.31-38
    • /
    • 2002
  • 본 논문에서는 4인승 커나드 항공기에 측정 센서와 데이터 처리 장비를 장착하고, 비행 성능 시험을 수행하여 획득한 비행데이터를 분석하였다. 실속 시험을 통하여 주익 실속이 원천적으로 방지되는 커나드 항공기 고유의 안전성을 확인하였다. 상반각효과, 역 빗놀이 현상 및 롤 조종력을 살펴보았고, 종 안정성을 좌우하는 중립점 위치를 추정하였다. 더치롤모드 등의 동운종 특성도 분석하였다. 일반적인 변수추정방법을 사용하지 않고 정상비행 상태에서의 비행데이터로부터 공렬 미계수 값을 직접 추정하거나 공렬 미계수 간의 관계식을 구하였다.

비행시험을 통한 경항공기의 매개변수 확정과 시뮬레이션 (Parameter Identification and Simulation of Light Aircraft Based on Flight Test)

  • 황명신;이정훈
    • 제어로봇시스템학회논문지
    • /
    • 제5권2호
    • /
    • pp.237-247
    • /
    • 1999
  • Flight parameters of a light aircraft in normal category named ChangGong-91 we identified from flight tests. Modified Maximum Likelihood Estimation (MMLE) is used to produce aerodynamic coefficients, stability and control derivatives. A Flight Training Device (FTD) has been developed based on the identified flight parameters. Flat earth, rigid body, and standard atmosphere are assumed in the FTD model. Euler angles are adapted for rotational state variables to reduce computational load. Variations in flight Mach number and Reynolds number are assumed to be negligible. Body, stability and inertial axes allow 6 second-order linear differential equations for translational and rotational motions. The equations of motion are integrated with respect to time, resulting in good agreements with flight tests.

  • PDF