• Title/Summary/Keyword: Aerodynamic characteristics of an aircraft

Search Result 54, Processing Time 0.021 seconds

Aerodynamics Characteristics of Hypersonic Vehicle in Near Space

  • Wu, Dingyi;Liu, Zhenxia;Xiao, Hong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.503-505
    • /
    • 2008
  • The purpose of the current study is to examine the aerodynamic characteristics of two hypersonic vehicles in near space. One is derived from waverider shape, and the other from liftbody. The objective of this study are threefold. The first is to creat an computational database for hypersonic vehicle configurations. The second is to examine the effects of individual vehicle components on hypersonic configurations and to determine the differences in aerodynamic characteristics that result from integrating all vehicle components. The third objective is to evaluate the controllability of each of the fully integrated vehicles and the effectiveness of the control surface design. These objectives were accomplished using DSMC solutions and aerodynamic code developed in Northwestern Polytechnical University. The results are analyzed also in three sections. First, the results of the waverider shape and liftbody shape without integrated vehicle components are presented. Second, the results of adding aircraft components to the waverider shape and liftbody shape are presented. Finally, the aerodynamic characteristics of the fully integrated waverider-derived configuration and liftbody-derived configuration are examined and compared with those of the pure waverider shape and liftbody shape. Comparation between fully integrated waverider-derived configuration and liftbody-derived configuration are also presented in this paper.

  • PDF

Nonlinear Aerodynamic Analysis of Wing with Control Surface Using an Iterative Decambering Approach (반복적 캠버변형 기법을 이용한 조종면이 있는 날개의 비선형 공력특성 해석)

  • Cho, Jeong-Hyun;Joung, Yong-In;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.5
    • /
    • pp.375-380
    • /
    • 2007
  • The nonlinear aerodynamic analysis of wing with control surface is performed using the frequency-domain panel method. To take into consideration the nonlinear aerodynamic characteristics of wing an iterative decambering approach is introduced. The iterative decambering approach uses the known aerodynamic characteristics of airfoil to calculate the aerodynamic characteristics of wing. The multi-dimensional Newton iteration is used to account for the coupling between the different sections of wing. The present method is verified by showing that it produces results that are in good agreement with experiments. The present method will be useful for the analysis of aircraft in the conceptual design because the present method can calculate promptly the nonlinear aerodynamic characteristics of wing with a few computing resources.

A CFD ANALYSIS ON EFFECTS OF ICE ACCRETIONS ON CHARACTERISTICS OF STALL AND DRAG IN AIRFOIL AERODYNAMICS (에어포일의 결빙에 의한 실속 및 항력 특성 변화에 관한 CFD 해석)

  • Jung, S.K.;Shin, S.M.;Myong, R.S.;Cho, T.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.27-30
    • /
    • 2009
  • The aerodynamic performance of aircraft in icing condition can deteriorate considerably by contamination of aerodynamic and propulsive systems due to icing accretions on aircraft surfaces. A computational analysis based on the Eulerian description was performed on an airfoil to investigate effects of ice accretions on airfoil aerodynamics. A water droplet with liquid water concentration ($0.00075kg/m^3$) and mean volume diameter ($20{\mu}m$) was considered and applied to various angles of attack to investigate the stall angle decrease and the drag increment.

  • PDF

A STUDY ON THE LOW REYNOLDS NUMBER AIRFOILS FOR THE DESIGN OF THREE DIMENSIONAL WING (3차원 날개 설계를 위한 저레이놀즈수 에어포일에 대한 연구)

  • Jung, K.J.;Lee, J.;Kwon, J.H.;Kang, I.M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.90-96
    • /
    • 2009
  • In this study, a generic airfoil designed by the inverse method was evaluated with several candidate airfoils as a first step. Each airfoil was compared with respect to aerodynamic performance to meet the requirement of HALE(high altitude long endurance) aircraft. The second step was to optimize the candidate airfoil using the couple of optimization formulations to down select an optimum airfoil. For the analysis of low Reynolds number 2D flow, Drela's MSES was used. After comparing the aerodynamic results, the best airfoil was chosen to construct the baseline 3D wing. The Navier-Stokes code was used to evaluate the overall aerodynamic performance of designed wing with other wings. The results show that the designed wing has the best performance compared with other wings.

  • PDF

Morphing Wing Mechanism Using an SMA Wire Actuator

  • Kang, Woo-Ram;Kim, Eun-Ho;Jeong, Min-Soo;Lee, In;Ahn, Seok-Min
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.1
    • /
    • pp.58-63
    • /
    • 2012
  • In general, a conventional flap on an aircraft wing can reduce the aerodynamic efficiency due to geometric discontinuity. On the other hand, the aerodynamic performance can be improved by using a shape-morphing wing instead of a separate flap. In this research, a new flap morphing mechanism that can change the wing shape smoothly was devised to prevent aerodynamic losses. Moreover, a prototype wing was fabricated to demonstrate the morphing mechanism. A shape memory alloy (SMA) wire actuator was used for the morphing wing. The specific current range was measured to control the SMA actuator. The deflection angles at the trailing edge were also measured while various currents were applied to the SMA actuator. The trailing edge of the wing changed smoothly when the current was applied. Moreover, the deflection angle also increased as the current increased. The maximum frequency level was around 0.1 Hz. The aerodynamic performance of the deformed airfoil by the SMA wire was analyzed by using the commercial program GAMBIT and FLUENT. The results were compared with the results of an undeformed wing. It was demonstrated that the morphing mechanism changes the wing shape smoothly without the extension of the wing skin.

Measured aerodynamic coefficients of without and with spiked blunt body at Mach 6

  • Kalimuthu, R.;Mehta, R.C.;Rathakrishnan, E.
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.3
    • /
    • pp.225-238
    • /
    • 2019
  • A spike attached to a blunt nosed body significantly alters its flow field and influences the aerodynamic coefficients at hypersonic speed. The basic body is an axisymmetric, with a hemisphere nose followed by a cylindrical portion. Five different types of spikes, namely, conical aerospike, hemisphere aerospike, flat-face aerospike, hemisphere aerodisk and flat-face aerodisk are attached to the basic body in order to assess the aerodynamic characteristic. The spiked blunt body without the aerospike or aerodisk has been set to be a basic model. The coefficients of drag, lift and pitching moment were measured with and without blunt spike body for the length-to-diameter ratio (L/D) of 0.5, 1.0, 1.5 and 2.0, at Mach 6 and angle of attack up to 8 degrees using a strain gauge balance. The measured forces and moment data are employed to determine the relative performance of the aerodynamic with respect to the basic model. A maximum of 77 percent drag reduction was achieved with hemisphere aerospike of L/D = 2.0. The comparison of aerodynamic coefficients between the basic model and the spiked blunt body reveals that the aerodynamic drag and pitching moment coefficients decrease with increasing the L/D ratio and angle of attack but the lift coefficient has increasing characteristics.

Airfoil Testing to Obtain Full-range Aerodynamic Characteristics based on Velocity Field Measurements Utilizing a Digital Wind Tunnel (익형의 전 범위 받음각에서 공력특성 시험이 가능한 디지털 풍동의 개발 및 속도장 측정)

  • Kang, Sangkyun;Kim, Jin-Ok;Kim, Yong-Su;Shin, Won-Sik;Lee, Sang-Il;Lee, Jang-Ho
    • New & Renewable Energy
    • /
    • v.18 no.3
    • /
    • pp.60-71
    • /
    • 2022
  • A wind tunnel provides artificial airflow around a model throughout the test section for investigating aerodynamic loads. It has various applications, which include demonstration of aerodynamic loads in the building, automobile, wind energy, and aircraft industries. However, owing to the high equipment costs and space-requirements of wind tunnels, it is challenging for numerous studies to utilize a wind tunnel. Therefore, a digital wind tunnel can be utilized as an alternative for experimental research because it occupies a significantly smaller space and is easily operable. In this study, we performed airfoil testing based on velocity field measurements utilizing a digital wind tunnel. This wind tunnel can potentially be utilized to test the full-range aerodynamic characteristics of airfoils.

Assessment of the aerodynamic and aerothermodynamic performance of a high-lift reentry vehicle

  • Pezzella, Giuseppe
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.2
    • /
    • pp.109-124
    • /
    • 2015
  • This paper deals with the aerodynamic and aerothermodynamic trade-off analysis of a hypersonic flying test bed. Such vehicle will have to be launched with an expendable launcher and shall re-enter the Earth atmosphere allowing to perform several experiments on critical re-entry phenomena. The demonstrator under study is a re-entry space glider characterized by a relatively simple vehicle architecture able to validate hypersonic aerothermodynamic design database and passenger experiments, including thermal shield and hot structures. A summary review of the aerodynamic characteristics of two flying test bed concepts, compliant with a phase-A design level, has been provided hereinafter. Several design results, based both on engineering approach and computational fluid dynamics, are reported and discussed in the paper.

Numerical Investigation of Ground Effect of Dual Ducted Fan Aircraft During Hovering Flight (제자리 비행하는 이중 덕트 팬 비행체의 지면 효과에 대한 수치적 연구)

  • Lee, Yujin;Oh, Sejong;Park, Donghun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.10
    • /
    • pp.677-690
    • /
    • 2022
  • By using an actuator disk method based flow solver, aerodynamic analysis is carried out for a dual ducted fan aircraft, which is one of the VTOL compound aircrafts, and its associated ground effect is analyzed. The characteristics and accuracy of the solver for ground effect analysis is evaluated through a comparison with the results obtained from the sliding mesh technique. The aerodynamic performance and flow field characteristics with respect to the distance from the ground are analyzed. As the ground distance decreases, the fan thrust increases, but the deterioration of total normal force and hovering flight efficiency is identified owing to the decrease in the vertical force of the duct, fuselage, and wing. By examining the flow field in the bottom of the fuselage, the ground vortices and fountain flow generated by the interaction of the fan wake and ground are identified, and their influence on the aerodynamic performance is analyzed. The strength and characteristics of outwash with respect to the ground distance and azimuth direction are analyzed through comparison/examination of velocity profile. Influence of the ground effect with respect to collective pitch angle is also identified.

Computational Investigations of Adverse Effects of Deploying Spoilers on Airfoil Aerodynamic Characteristics (스포일러 동적 작동에 따른 에어포일 공력특성 역전현상 연구)

  • Chung, Hyoung-Seog
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.5
    • /
    • pp.335-342
    • /
    • 2020
  • Tailless aircraft designed for stealth efficiency uses spoilers instead of rudders for the directional control. When the spoiler is rapidly deployed, highly nonlinear and unsteady aerodynamic characteristics can be generated, resulting in adverse effects on aircraft flight performance. This paper investigates the aerodynamic characteristics of an airfoil with moving spoiler using dynamic mesh CFD technique. The effects of spoiler operation speed, mounting location, and deployment scheduling are analyzed to reduce the adverse effects of the spoiler's dynamic operation. The results shows that the adverse effects of dynamic spoiler can be reduced by appropriate selection of the spoiler mounting location and deployment scheduling.