• Title/Summary/Keyword: Aerodynamic center

Search Result 217, Processing Time 0.031 seconds

Static and dynamic characterization of a flexible scaled joined-wing flight test demonstrator

  • Carregado, Jose;Warwick, Stephen;Richards, Jenner;Engelsen, Frode;Suleman, Afzal
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.2
    • /
    • pp.117-144
    • /
    • 2019
  • High Altitude and Long Endurance (HALE) aircraft are capable of providing intelligence, surveillance and reconnaissance (ISR) capabilities over vast geographic areas when equipped with advanced sensor packages. As their use becomes more widespread, the demand for additional range, endurance and payload capability will increase and designers are exploring non-conventional configurations to meet the increasing demands. One such configuration is the joined-wing concept. A joined-wing aircraft is one that typically connects a front and aft wings in a diamond shaped planform. One such example is the Boeing SensorCraft configuration. While the joined-wing configuration offers potential benefits regarding aerodynamic efficiency, structural weight, and sensing capabilities, structural design requires careful consideration of elastic buckling resulting from the aft wing supporting, in compression, part of the forward wing structural loading. It has been shown already that this is a nonlinear phenomenon, involving geometric nonlinearities and follower forces that tend to flatten the entire configuration, leading to structural overload due to the loss of the aft wing's ability to support the forward wing load. Severe gusts are likely to be the critical design condition, with flight control system interaction in the form of Gust Load Alleviation (GLA) playing a key role in minimizing the structural loads. The University of Victoria Center for Aerospace Research (UVic-CfAR) has built a 3-meter span scaled and flexible wing UAV based on the Boeing SensorCraft design. The goal is to validate the nonlinear structural behavior in flight. The main objective of this research work is to perform Ground Vibration Tests (GVT) to characterize the dynamic properties of the scaled flight vehicle. Results from the experimental tests are used to characterize the modal dynamics of the aircraft, and to validate the numerical models. The GVT results are an important step towards a safe flight test program.

The Study for Voice Onset Types in Benign Vocal Fold Lesions (양성성대질환에서의 발성시작유형에 관한 연구)

  • Kim, Seong-Tae;Ahn, Cheol-Min;Nam, Soon-Yuhl
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.20 no.2
    • /
    • pp.131-135
    • /
    • 2009
  • Background and Objectives: Benign vocal fold lesions have shown various voice onset types on phonation, however, they have not been documented yet. We studied to know the relationships between benign vocal fold lesions and voice onset types. Materials and Method: 114 subjects were evaluated by using videokymographic examinations. The subjects were classified into three types: normal, contact, and open types according to the patterns of voice onset types on phonation. Benign vocal fold lesions were investigated and voice onset types were compared between normal and disease groups. Voice parameters were obtained from and compared in all subjects to assess acoustic and aerodynamic factors. Results: The normal type among onset types were more than contact type or open type in both normal and disease groups. Disease group showed many contact and open types when. compared with normal group. Vocal nodule and vocal polyp were showed many normal and contact types, however, sulcus vocalis was almost showed open type among voice onset groups. The values of mean flow rate (MFR) of contact type were significantly higher compared to normal type in disease group (p<0.05). Shimmer of contact type was higher than normal type in diseasegroup, but the difference was not significant (p=0.057). Conclusion: Benign vocal fold lesions were related to the various types of voice onset. The various types of voice onset should be considered when benign vocal fold lesions were examined.

  • PDF

Hinge rotation of a morphing rib using FBG strain sensors

  • Ciminello, Monica;Ameduri, Salvatore;Concilio, Antonio;Flauto, Domenico;Mennella, Fabio
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1393-1410
    • /
    • 2015
  • An original sensor system based on Fiber Bragg Gratings (FBG) for the strain monitoring of an adaptive wing element is presented in this paper. One of the main aims of the SARISTU project is in fact to measure the shape of a deformable wing for performance optimization. In detail, an Adaptive Trailing Edge (ATE) is monitored chord- and span-wise in order to estimate the deviation between the actual and the desired shape and, then, to allow attaining a prediction of the real aerodynamic behavior with respect to the expected one. The integration of a sensor system is not trivial: it has to fit inside the available room and to comply with the primary issue of the FBG protection. Moreover, dealing with morphing structures, large deformations are expected and a certain modulation is necessary to keep the measured strain inside the permissible measure range. In what follows, the mathematical model of an original FBG-based structural sensor system is presented, designed to evaluate the chord-wise strain of an Adaptive Trailing Edge device. Numerical and experimental results are compared, using a proof-of-concept setup. Further investigations aimed at improving the sensor capabilities, were finally addressed. The elasticity of the sensor structure was exploited to enlarge both the measurement and the linearity range. An optimisation process was then implemented to find out an optimal thickness distribution of the sensor system in order to alleviate the strain level within the referred component.

Developing High Altitude Long Endurance (HALE) Solar-powered Unmanned Aerial Vehicle (UAV) (고고도 장기체공 태양광 무인기 개발)

  • Hwang, SeungJae;Kim, SangGon;Lee, YungGyo
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.59-65
    • /
    • 2016
  • Korea Aerospace Research Institute (KARI) is developing an electric-driven HALE UAV in order to secure system and operational technologies since 2010. Based on the 5 years of flight tests and design experiences of the previously developed electric-driven UAVs, KARI has designed EAV-3, a solar-powered HALE UAV. EAV-3 weighs 53 kg, the structure weight is 21 kg, and features a flexible wing of 19.5 m in span with the aspect ratio of 17.4. Designing the main wing and empennage of the EAV-3 the amount of the bending due to the flexible wing, 404 mm at 1-G flight condition based on T-800 composite material, and side wind effects due to low cruise speed, V_cr = 6 m/sec, are carefully considered. Also, unlike the general aircraft there is no center of gravity shift during the flight. Thus, the static margin cuts down to 28.4% and center of gravity moves back to 31% of the Mean Aerodynamic Chord (MAC) comparing to the previously developed scale-down HALE UAVs, EAV-2 and EAV-2H, to minimize a trim drag and enhance a performance of the EAV-3. The first flight of the EAV-3 has successfully conducted on the July 29, 2015 and the test flight above the altitude 14 km has efficiently achieved on the August 5, 2015 at the Goheung aviation center.

Fabrication of Light-weight Ceramic Insulation Materials by Using Oxide Ceramic Fibers for Reusable Thermal Protection Systems (산화물 세라믹섬유를 이용한 재사용 열보호시스템용 경량 세라믹 단열소재의 제조)

  • Seongwon, Kim;Min-Soo, Nam;Yoon-Suk, Oh;Sahn, Nahm;Jaesung, Shin;Hyeonjun, Kim;Bum-Seok, Oh
    • Journal of Powder Materials
    • /
    • v.29 no.6
    • /
    • pp.477-484
    • /
    • 2022
  • Thermal protection systems (TPS) are a group of materials that are indispensable for protecting spacecraft from the aerodynamic heating occurring during entry into an atmosphere. Among candidate materials for TPS, ceramic insulation materials are usually considered for reusable TPS. In this study, ceramic insulation materials, such as alumina enhanced thermal barrier (AETB), are fabricated via typical ceramic processing from ceramic fiber and additives. Mixtures of silica and alumina fibers are used as raw materials, with the addition of B4C to bind fibers together. Reaction-cured glass is also added on top of AETB to induce water-proof functionality or high emissivity. Some issues, such as the elimination of clumps in the AETB, and processing difficulties in the production of reusable surface insulation are reported as well.

The Phonetic Characteristics and Voice Handicap Index in Allergic Rhinitis Patients (알레르기성 비염 환자들의 음향음성학적 특성 및 음성장애지수)

  • Kim, Seong-Tae;Choi, Seung-Ho;Roh, Jong-Lyel;Lee, Bong-Jae;Shim, Mi-Ran;Kim, Sang-Yoon;Nam, Soon-Yuhl
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.18 no.1
    • /
    • pp.39-43
    • /
    • 2007
  • Background and Objectives: There are few studies reported that specifically examine the phonetic characteristics and voice handicap index (VHI) in patients with Allergic Rhinitis. This study was designed to examine phonetic characteristics and VHI in adult patients with allergic rhinitis. Materials and Methods: Forty-two male patients diagnosed as allergic rhinitis were given skin-prick test and others, aged from 20 to 56 years, and were compared with a 16 male control group with no pathology and in the same age group. The VHI was used to measure the changes of patient's perception. Acoustic and aerodynamic analysis test were done, and a nasalance test performed to measure rabbit, baby, and mother passage. Acoustic rhionometry (AR) was performed to evaluate nasal volume and nasal crosssectional area. Statistical analysis was done using independent sample t-test. Results: VHI showed significantly different score in the studied group, higher than that of control group. AR graph showed that there was no significant differences of nasal volume and nasal cross-sectional area. The Shimmer and SFF value in the group of allergic patients were higher than in the control group. MPT value in the group of allergic patients was lower than in the control group. Nasalance in allergic patients showed hypernasality all passage. Conclusion: We suggest that patients with allergic rhinitis have considerable voice problems. Most of them have hypernasality, which may be a compensatory mechanism by nasal obstruction.

  • PDF

Integrated Guidance and Control Design for the Near Space Interceptor

  • WANG, Fei;LIU, Gang;LIANG, Xiao-Geng
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.278-294
    • /
    • 2015
  • Considering the guidance and control problem of the near space interceptor (NSI) during the terminal course, this paper proposes a three-channel independent integrated guidance and control (IGC) scheme based on the backstepping sliding mode and finite time disturbance observer (FTDO). Initially, the three-channel independent IGC model is constructed based on the interceptor-target relative motion and nonlinear dynamic model of the interceptor, in which the channel coupling term and external disturbance are regarded as the total disturbances of the corresponding channel. Then, the FTDO is introduced to estimate the target acceleration and control system loop disturbances, and the feed-forward compensation term based on the estimated values is employed to effectively remove the effect of disturbances in finite time. Subsequently, the IGC algorithm based on the backstepping sliding mode is also given to obtain the virtual control moment. Furthermore, a robust least-squares weighted control allocation (RLSWCA) algorithm is employed to distribute the previous virtual control moment among the corresponding aerodynamic fins and reaction jets, which also takes into account the uncertainty in the control effectiveness matrix. Finally, simulation results show that the proposed IGC method can obtain the small miss distance and smooth interceptor trajectories.

Estimation of Sensible and Latent Heat Fluxes Using the Satellite and Buoy Data (위성과 부이자료를 이용한 현.잠열 추정에 관한 연구)

  • 홍기만;김영섭;윤홍주;박경원
    • Proceedings of the KSRS Conference
    • /
    • 2001.03a
    • /
    • pp.104-110
    • /
    • 2001
  • Ocean heat fluxes over a wide region are generally estimated by an aerodynamic bulk fromula. Though a remote sensing technique can be expected to estimated global heat flux, it is difficult to obtain air temperature and specific humidity at sea surface by a remote sensor. In this study present a new method with which to determine near-sea surface air temperature from in situ data. Also, These methods compared with other methods. A new method used a linear regression equation between sea surface temperature and air temperature of the buoys data. In this study new method is validated using observed monthly mean data at the Japan Meteorological Agency(JMA), National Data Buoy Center(NDBC) and Tropical Ocean-Global Atmosphere(TOGA)-Tropical Atmosphere Ocean(TAO) buoys. The result that bias and rmse are 0.28, 1.5$0^{\circ}C$ respectively. The correlation coefficient is 0.98. Also, to retrieve near-sea surface specific humidity(Q) from good nonlinear regression relationship between vapor pressure(Ea) of buoy data and air temperature, after obtained the third-order polynomial function, compared with that of estimated from SSM/I empirical equation by Schussel et al(1995). The result that bias and rmse are -1.42 and 1.75(g/kg).

  • PDF

Calculations on the Interactions between Main and Jib Sails (요트의 Main세일과 Jib세일 사이의 간섭 효과에 대한 수치해석)

  • Yoo, Jae-Hoon;Park, Il-Ryong;Kim, Jin;Ahn, Hae-Seong;Van, Suak-Ho;Lee, Pyeong-Guk
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.1 s.139
    • /
    • pp.24-33
    • /
    • 2005
  • It is important to understand the flow characteristics around two sails of a sloop yacht. In this paper a computational aerodynamic investigation is performed over sail-like airfoils similar to the main and iIb sails of a 30 feet sailing yacht. Lift and drag are calculated for various conditions of slit distance between the two sails and overlapped length of the jib sail. The thrust and CE(center of effort) of the sail system are obtained. It is found that the combination of two sails produces the thrust force larger than the sum of the thrust force of each sail standing separately and the slit distance of the two sails are important factor to increase lift force.

Study on the Buzz Characteristics of Supersonic Air Intake at Mach 2.5 (마하 2.5 초음속 공기흡입구의 버즈 특성에 관한 연구)

  • Lee, Hyoung-Jin;Jeung, In-Seuck
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.331-335
    • /
    • 2006
  • Theoretically, stable operations of an inlet are achieved at the design condition. However, at off-design conditions supersonic inlets often encounter the problem of aerodynamic instability, called inlet buzz. During inlet buzz, supersonic inlets exhibit considerable oscillation of the shock system in front of the inlet and corresponding large pressure fluctuations downstream. This phenomenon results in decrease of engine performance. An experimental and numerical study was conducted to investigate the phenomenon of supersonic inlet buzz on a generic, axisymmetric, external-compression inlet with a single-surface center-body. This study suggest that intermittent buzz exist and the frequency become to be large as increasing the back pressure.

  • PDF