• Title/Summary/Keyword: Aerodynamic Rig Test

Search Result 17, Processing Time 0.031 seconds

Aerodynamic Rig Test of Radial Turbine for APU (APU용 구심터빈의 공력리그시험)

  • Kang, Jeong-Seek;Lim, Byeung-Jun;Ahn, Iee-Ki
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • An aerodynamic rig test of a radial turbine for an auxiliary power unit (APU) was performed at a high-temperature turbine test facility at the Korea Aerospace Research Institute. The pressure ratio, Mach number, and flow coefficient in the rig test are the same as those under normal engine operation conditions. The design pressure ratio is 3.096, design test speed is 34909 rpm, and turbine inlet temperature is $160^{\circ}C$. The turbine has airfoil-type nozzles, and the diameter of the turbine wheel is 175.74 mm. The turbine map is experimentally measured, and the detailed flow at the turbine inlet is measured. The pressure distribution in the nozzle at both the hub and the shroud sides and the pressure distribution along the shroud casing of the turbine wheel were measured, and this confirmed that the expansion process in the turbine wheel is acceptable.

Test Methods on Development of Low Emission Gas Turbine Combustor (저공해 연소기 시험기술)

  • Kim, Hyung-Mo;Choi, Young-Ho;Kim, Dong-Sik;Park, Poo-Min
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.29-34
    • /
    • 2007
  • On the stage of combustor development process, many aerodynamic and combustion characteristics are found out not by only ideal design concept but by only useful tests which are top confidentiality of technically advanced engine development companies, RR and GE, etc. In this study, test techniques of one of that company are analysed and described about some unique tests for test low emission combustors.

  • PDF

Pressure Characteristics on Korean High-Speed Railway Acoustic Screen Using 1/61 Scaled-Down Moving Model Rig

  • Jang, Yong-Jun;Kim, Hag-Beom;Jung, Woo-Sung;Kim, Dong-Hyeon
    • International Journal of Railway
    • /
    • v.2 no.2
    • /
    • pp.93-97
    • /
    • 2009
  • The experiments for aerodynamic characteristics of railway acoustic screen are performed using 1/61 scaled-down moving model rig facility which employs an axis symmetry and one wire guidance method. The launching mechanism is an air-gun type. The train model for the experiment is the high speed train (Korea Train Express: KTX) and the tested speed is about 300 km/h. The tested train length is 61 em which is corresponding to two units of KTX train. The cross sectional area and weight of train model are 0.00264 $m^2$ and 287 g, respectively. The Reynolds number based on the model train length is $1.2{\times}10^7$. The strength of pressure wave is measured using piezo typed pressure sensor. The measured pick value of pressure was as high as 365 Pa in the shortest gap between the acoustic screen and model train. The measured pressure is well compared with the field test data of mc 779-1 [2] values. However, the experimental data were slightly lower than the mc 779-1 values. The results show the model test can be used as a substitute for the field test.

  • PDF

Effects of the yaw angle on the aerodynamic behaviour of the Messina multi-box girder deck section

  • Diana, G.;Resta, F.;Zasso, A.;Belloli, M.;Rocchi, D.
    • Wind and Structures
    • /
    • v.7 no.1
    • /
    • pp.41-54
    • /
    • 2004
  • An analysis refinement of the Messina Strait suspension bridge project has been recently required, concerning mainly the yaw angle effects on the multi-box deck section aerodynamics and the vortex shedding at low reduced velocities $V^*$. In particular the possible interaction of the axial flow with the large cross beams has been investigated. An original test rig has been designed at this purpose allowing for both forced motion and free motion aero elastic tests, varying the average angle of attack ${\alpha}$ and the deck yaw angle ${\beta}$. The hydraulic driven test rig allowed for both dynamic and stationary tests so that both the stationary coefficients and the flutter derivatives have been evaluated for each yaw angle. Specific free motion tests, taking advantage from the aeroelastic features of the section model, allowed also the study of the vortex shedding induced phenomena.

Dynamic Characteristic Analysis of Aerodynamic Load Simulator English (항공기 조종면 부하재현장치의 운동 특성 해석)

  • Nam, Yun-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.478-485
    • /
    • 2001
  • A dynamic load simulator(DLS) which can reproduce on-ground the aerodynamic hinge moment of control surface is an essential rig for the performance and stability test of aircraft actuation system. By setting up load actuator as counter acting with the control surface driving actuator and designing an appropriate force control system for load actuator, DLS can be mechanized. Obtaining an accurate mathematical model for the DLS is the first step to successfully design an aerodynamic load replicati on system. Two theoretical models are presented and tested for their validities with the experimental results, which turns out to be not successful. An alternative way of using system identification approaches in investigated to develop a good nominal model for DLS dynamics, and suitable uncertainty bounds for this nominal model are proposed with the consideration of experimental results.

A Study on the Aerodynamic Design of Three-Dimensional Axial Type Turbine Blade (3차원 축류형 터빈익형의 공력설계에 관한 연구)

  • Jang, B.I.;Kim, D.S.;Cho, S.Y.
    • Journal of Power System Engineering
    • /
    • v.5 no.3
    • /
    • pp.38-47
    • /
    • 2001
  • One stage axial type turbine is designed by mean-line analysis, streamline curvature method and blade design method using shape parameters. Tip and hub diameter of the turbine are 300mm and 206.4mm, respectively. The rotating speed is 1800RPM, and the output power is 1.4kW. The flow coefficient is 1.68 and the reaction factor at mean-line is 0.373. The number of stator and rotor of the turbine are 31 and 41, respectively. Mach number of stator exit flow near hub is 0.164. A test rig is developed for performance test to validate a developed design method. The experimental result shows that the maximum efficiency is obtained on the design point.

  • PDF

Design and Experimental Study on a Turbo Air Compressor for Fuel Cell Applications (연료전지용 터보 공기압축기의 설계 및 시험평가)

  • Choi, Jae-Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.1
    • /
    • pp.26-34
    • /
    • 2008
  • This study presents an aerodynamic design and an experimental performance test of a turbo air compressor consisted of mixed-flow impeller and curved diffuser for the PEM fuel cell vehicle application. Many studies compare the efficiency, cost or noise level of high-pressure and low-pressure operation of PEM fuel cell systems. Pressure ratio 2.2:1 is considered as design target The goal of compressor design is to enlarge the flow margin of compressor from surge to choke mass flow rate to cover the operational envelope of FCV. Large-scale rig test is performed to evaluate the compressor performance and to compare the effects of compressor exit pipe volume to stall or surge characteristics. The results show that the mixed-flow compressor designed has large flow margin, and the flow margin of compressor configuration with small exit volume is larger than that with large exit volume.

Simulator Development for the Aerodynamic Characteristics of a Wing in Ground (지면효과익의 공기역학특성을 위한 모사실험장치 개발에 관한 연구)

  • Kim, Tae-Ho;Kim, Heuy-Dong;Lee, Myeong-Ho;Shon, Myong-Hwan;Kashimura, Hideo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1724-1729
    • /
    • 2003
  • A new ground transportation system is often simulated by the wing in ground effect(WIG). Recently, several kinds of experimental and computational studies are being carried out to investigate the WIG aerodynamic characteristics which are of practical importance to develop the new ground transportation vehicle system. These works are mainly based on conventional wind tunnel tests, but many problems associated with the WIG aerodynamic characteristics can not be satisfactorily resolved. In order to develop the new ground transportation vehicle system the WIG should be further investigated. To do this, it is necessary to develop a s imulator appropriate to the WIG aerodynamics. The objective of the present study is to clarify the aerodynamic characteristics of the WIG and to develop a new experimental test rig for the investigation of the WIG aerodynamics. Some preliminary experiments are performed to investigate the usefulness of the WIG simulator.

  • PDF

Development of a Test Rig for Three-Dimensional Axial-Type Turbine Blade (축류형 3차원 터빈익형의 성능시험장치 개발)

  • Chang, B.I.;Kim, D.S.;Cho, S.Y.;Kim, S.Y.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.453-460
    • /
    • 2000
  • A test rig is developed for performance test of 1 stage axial-type turbine which is designed by meanline analysis, streamline curvature method, and blade design method using configuration parameters. The purpose of this study is to find the best configuration parameters for designing a high efficiency axial-type turbine blade. To measure the efficiency of turbine stage, a dynamo-meter is installed. Two different stators which are manufactured as an integrated type are developed, and a rotor blade and 5 sets disc are developed for setting different stagger angle. The tip and hub diameters of the test turbine are 300 and 206.4mm, respectively. The rotating speed is 1800RPM, and the extracted power is 2.5kW. Flow coefficient is 1.68 and the reaction factor at meanline is 0.373. The number of stator and rotor of test turbine are 31 and 41, respectively. The Mach number of stator exit flow near hub is 0.164.

  • PDF

Experimental Verification of Compressor Blade Aeromechanics (압축기 블레이드 Aeromechanics의 시험적 검증)

  • Choi, Yun Hyuk;Park, Hee Yong;Kim, Jee Soo;Shin, Dong Ick;Choi, Jae Ho;Kim, Yeong Ryeon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.240-244
    • /
    • 2017
  • Experimental verification in the rig test stage for component development is a vital link between the aeromechanical design and structural integrity validation process. Based on this premise, Non-Intrusive Stress Measuring System was adopted on the axial compressor test rig to measure the static and dynamic tip deflection of all blades by using tip-timing sensors. Through analyzing vibration characteristics, we evaluated the vibratory stresses seen on the blades fatigue critical location; detected synchronous resonances which are the source of High Cycle Fatigue (HCF) in blades; presented non-synchronous vibration response by aerodynamic excitation and individual blade mis-tuning patterns.

  • PDF