• 제목/요약/키워드: Aerodynamic Performance Loss

검색결과 83건 처리시간 0.02초

과급기의 고압력비 원심압축기 공력설계 및 시험평가 (Performance Test and Aerodynamic Design on the High Pressure Ratio Centrifugal Compressor of a Turbocharger)

  • 김홍원;류승협;이근식
    • 한국유체기계학회 논문집
    • /
    • 제17권6호
    • /
    • pp.13-20
    • /
    • 2014
  • It is necessary to design a compressor with high pressure ratio that satisfies the IMO(international maritime organization) NOx emission regulation for the marine diesel engine. Impeller was designed using the modified slip factor with the flow coefficient. The main purpose of this study is to investigate the sensitivity of the compressor performance by the vaned diffuser geometries. The first vaned diffuser type was based on a NACA airfoil, the second was channel diffuser, and the third was conformally transformated configuration of a NACA65(4A10)06 airfoil. The sensitivity of the performance was calculated using a commercial CFD program for three different diffuser geometries. The channel diffuser showed the wide range of operation and higher pressure characteristics, comparing with the others. This is attributed to the flow stability at diffuser. Combined with this results with impeller design, the optimized compressor was designed and verified by the test results.

연료전지용 저소음 재생형 송풍기의 개발 (Development of a Low-noise Regenerative Blower for Fuel Cell Application)

  • 김준곤;이광영;이찬;길현권;정경호;황상문
    • 한국유체기계학회 논문집
    • /
    • 제17권2호
    • /
    • pp.48-53
    • /
    • 2014
  • A low-noise regenerative blower is developed for fuel cell application by combining the FANDAS-Regen code and design optimization algorithm under several performance constraints for flow capacity, static pressure, efficiency and power consumption. The optimized blower design model is manufactured with some impeller modification based on low noise design concept and tested by using aerodynamic performance chamber facility and narrow-band noise measurement apparatus. The measured results of the optimized blower satisfy the performance requirements and are also compared favorably with the FANDAS-Regen prediction results within a few percent relative error. Furthermore, the present study shows the remarkable noise reduction by 26 dBA can be achieved through design optimization and low noise design concept.

유전알고리즘과 CFD기법을 이용한 터빈블레이드 경사각 최적화 (Leaning Angle Optimization of the Turbine Blade using the Genetic Algorithm and CFD method)

  • 이은석;정용현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.413-414
    • /
    • 2008
  • Abstract should be in English. The leaning angle optimization of turbine blade using the genetic algorithm was conducted in this paper. The calculation CFD technique was based upon the Diagonalized Alternating Directional Implicit scheme(DADI) with algebraic turbulencemodeling. The leaning angle of VKI turbine blade was represented using B-spline curve. The control points are the design variable. Genetic algorithm was taken into account as an optimization tool. The objective was to minimize the total pressure loss. The optimized final geometry shows the better aerodynamic performance compared with the initial turbine blade.

  • PDF

반응표면법을 이용한 축류 압축기의 동익형상 최적설계 (Optimization of A Rotor Profile in An Axial Compressor Using Response Surface Method)

  • 송유준;이정민;김윤제
    • 한국유체기계학회 논문집
    • /
    • 제19권2호
    • /
    • pp.16-20
    • /
    • 2016
  • Design optimization of a transonic compressor rotor(NASA rotor 37) was carried out using response surface method(RSM) which is one of the optimization methods. A numerical simulation was conducted using ANSYS CFX by solving three-dimensional Reynolds-averaged Navier Stokes(RANS) equations. Response surfaces that were based on the results of the design of experiment(DOE) techniques were used to find an optimal shape of blade which has the maximum aerodynamic performance. Two objective functions, viz., the adiabatic efficiency and the loss coefficient were selected with three design configurations to optimize the blade shape. As a result, the efficiency of the optimized blade is found to be increased.

Numerical Optimization of the Turbine Blade Leaning Angle Using the Parallel Genetic Algorithm

  • Lee, Eun-Seok;Jeong, Yong-Hyun;Park, Soon-Young
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.686-689
    • /
    • 2008
  • The leaning angle optimization of turbine blade using the genetic algorithm was conducted in this paper. The calculation CFD technique was based upon the Diagonalized Alternating Directional Implicit scheme(DADI) with algebraic turbulence modeling. The leaning angle of VKI turbine blade was represented using B-spline curve. The control points are the design variable. Genetic algorithm was taken into account as an optimization tool. The objective was to minimize the total pressure loss. The optimized final geometry shows the better aerodynamic performance compared with the initial turbine blade.

  • PDF

Prediction of Specific Noise Based on Internal Flow of Forward Curved Fan

  • Sasaki, Soichi;Hayashi, Hidechito;Hatakeyama, Makoto
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권1호
    • /
    • pp.80-91
    • /
    • 2009
  • In this study, a prediction theory for specific noise that is the overall characteristic of the fan has been proposed. This theory is based on total pressure prediction and broadband noise prediction. The specific noises of two forward curved fans with different number of blades were predicted. The flow around the impeller having 120 blades (MF120) was more biased at a certain positions than the impeller with 40 blades (MF40). An effective domain of the energy conversion of MF40 has extended overall than MF120. The total pressure was affected by the slip factor and pressure loss caused by the vortex flow. The suppression of a major pressure drop by the vortex flow and expansion of the effective domain for energy conversion contributed to an increase in the total pressure of MF40 at the design point. The position of maximum relative velocity was different for each fan. The relative velocity of MF120 was less than that of MF40 due to the deviation angle. The specific noise of MF120 was 2.7 dB less than that of MF40 due to the difference in internal flow. It has been quantitatively estimated that the deceleration in the relative velocity contributed to the improvement in the overall performance.

Performance Evaluation of Exposed Aggregate Texturing in Concrete Pavement Based on In-Situ Noise Measurements

  • Moon, Han-Young;Ha, Sang-Wook
    • 콘크리트학회논문집
    • /
    • 제15권3호
    • /
    • pp.504-511
    • /
    • 2003
  • Environmental noise at high intensities directly affects human health by causing hearing loss. Although scientific evidence currently is not conclusive, noise is suspected of causing or aggravating other diseases. Environmental noise indirectly affects human welfare by interfering with sleep, thought, and conversation. Noise emission from motorized vehicle includes power unit noise, tire/pavement noise and aerodynamic noise. Among them, tire/pavement noise is noise emission from interaction of the tire and road surface when the vehicle cruises over the surface of pavement. In general, portland cement concrete(PCC) pavement is known to create more noise than asphaltic surfaces though it has the advantage of durability and superior surface friction. However, the results of preliminary laboratory test showed exposed aggregate concrete(EAC) has and effect on reducing tire/pavement noise. Based on the laboratory test. pilot construction of exposed aggregate concrete pavement was completed and series of in-situ measurements were conducted for noise analysis including the pass-by noise measurement and the close-proximity method. Conclusively, it is expected that tire/pavement noise represent significant portion of noise levels at higher frequencies and it would be reduced on special textures of pavement such as exposed aggregate concrete.

제어법칙 개발을 위한 소프트웨어 전환장치 설계에 관한 연구 (A Study on the Design of Software Switching Mechanism for Develops the Flight Control Law)

  • 김종섭;조인제;안종민;신지환;박상선
    • 제어로봇시스템학회논문지
    • /
    • 제12권11호
    • /
    • pp.1130-1137
    • /
    • 2006
  • Relaxed Static Stability(RSS) concept has been applied to improve aerodynamic performance of modern version supersonic jet fighter aircraft. Therefore, the flight control systems are necessary to stabilizes the unstable aircraft and provides adequate handling qualities. The initial production flight control system are verified by flight test and it's always an elements of danger because of flight-critical nature of control law function and design error due to model base design method. These critical issues impact to flight safety, and it could be lead to a loss of aircraft and pilot's life. Therefore, development of an easily modifiable RFCS(Research Flight Control System) capable of reverting to a PFCS(Primary Flight Control System) of reliable control law must be developed to guarantee the flight safety. This paper addresses the concept of SSWM(Software Switching Mechanism) using the fader logic such as TFS(Transient Free Switch) based on T-50 flight control law. The result of the analysis based on non-real time simulation in-house software using SSWM reveals that the flight control system are switching between two computers without any problem.

초음속 유동 내 벤트 혼합기의 형상적 특성에 따른 성능 연구 (A Performance Study of Vent Mixer with Geometric Characteristics in Supersonic Flow)

  • 김채형;정인석
    • 한국항공우주학회지
    • /
    • 제37권1호
    • /
    • pp.69-75
    • /
    • 2009
  • 본 논문은 새로운 개념의 초음속 혼합기인 벤트 혼합기의 형상적 특성에 따른 공력 특성을 연구하였다. 홀의 크기는 2 mm이며 혼합기 벽면에서 2 mm 떨어진 곳에 위치한 모델(case 1)과 혼합기 벽면 뒤쪽에 위치한 모델(case 2)의 경우 같은 전압력 회복율을 보였으며, 홀의 크기를 반으로 줄인 1 mm(case 3) 모델은 cases 1, 2에 비해 낮은 전압력 회복율을 보였다. 재순환 영역의 크기는 cases 1-3은 같지만 전단층 두께는 cases 1, 2가 case 3 보다 두꺼웠다. 재순환 영역 내 압력 손실의 경우 cases 1, 2은 case 3에 비해 낮은 압력 손실과 높은 속도 구배를 보였으며, 이는 재순환 영역 내 공기와 연료의 혼합을 증대시키는 요인이다. 재순환 영역 내로 유입 되는 유동에 의해 형성되는 박리 버블은 연소기의 전압력 회복율과 재순환 영역 내 압력 분포와 순환 유동에 영향을 미친다. 따라서 박리 버블 형성에 영향을 주는 유입 공기 유량이 벤트 혼합기 성능에 주요한 영향을 미치는 것을 알 수 있다.

Performance of a 3D pendulum tuned mass damper in offshore wind turbines under multiple hazards and system variations

  • Sun, Chao;Jahangiri, Vahid;Sun, Hui
    • Smart Structures and Systems
    • /
    • 제24권1호
    • /
    • pp.53-65
    • /
    • 2019
  • Misaligned wind-wave and seismic loading render offshore wind turbines suffering from excessive bi-directional vibration. However, most of existing research in this field focused on unidirectional vibration mitigation, which is insufficient for research and real application. Based on the authors' previous work (Sun and Jahangiri 2018), the present study uses a three dimensional pendulum tuned mass damper (3d-PTMD) to mitigate the nacelle structural response in the fore-aft and side-side directions under wind, wave and near-fault ground motions. An analytical model of the offshore wind turbine coupled with the 3d-PTMD is established wherein the interaction between the blades and the tower is modelled. Aerodynamic loading is computed using the Blade Element Momentum (BEM) method where the Prandtl's tip loss factor and the Glauert correction are considered. Wave loading is computed using Morison equation in collaboration with the strip theory. Performance of the 3d-PTMD is examined on a National Renewable Energy Lab (NREL) monopile 5 MW baseline wind turbine under misaligned wind-wave and near-fault ground motions. The robustness of the mitigation performance of the 3d-PTMD under system variations is studied. Dual linear TMDs are used for comparison. Research results show that the 3d-PTMD responds more rapidly and provides better mitigation of the bi-directional response caused by misaligned wind, wave and near-fault ground motions. Under system variations, the 3d-PTMD is found to be more robust than the dual linear TMDs to overcome the detuning effect. Moreover, the 3d-PTMD with a mass ratio of 2% can mitigate the short-term fatigue damage of the offshore wind turbine tower by up to 90%.