• Title/Summary/Keyword: Aerodynamic Performance Characteristics

Search Result 318, Processing Time 0.03 seconds

Investigation of Aerodynamic Characteristics of a Medium-Size Vehicle (중형 차량의 외부 유동특성에 관한 연구)

  • Lee, D.R.
    • Journal of Power System Engineering
    • /
    • v.10 no.2
    • /
    • pp.22-28
    • /
    • 2006
  • Computer simulation of the air flow over an automotive vehicle is now becoming a routine process in automotive industry to assess the aerodynamic characteristics of a medium-size vehicle such as $C_d\;and\;C_1$ and aslo to investigate the possibility of improving aerodynamic performance of the vehicle as a preliminary design for the production line. Mainly due to its contribution in saving time and cost in the development of new cars, computer simulation of the air flow over a vehicle is usually done well before a production car is introduced to the market and in gaining more and more attention as powerful computer resources are getting readily available nowadays. To aerodynamically design a car is mainly related with reducing a drag coefficient of car. A well designed car usually has a $C_d$ value in the range of $0.3{\sim}0.4$. It is understandable that automotive industry is rushing to reduce a drag coefficient as reducing even a small fraction of the $C_d$ value can have an enormous overall impact on many areas. Actually, the present research model was able to achieve a $C_d$ value in the range of $0.3{\sim}0.36$ for flow velocities of $60km/h{\sim}100km/h$ by strategically removing the possible factor hazardous to lower $C_d$ value. Prediction of the medium-size vehicle aerodynamics using CFD was performed when an actual car model was in the development stage and three-dimensional modeling was also performed to optimize it as the best model in terms of the best aerodynamic performance.

  • PDF

Effects of oscillation parameters on aerodynamic behavior of a rectangular 5:1 cylinder near resonance frequency

  • Pengcheng Zou;Shuyang Cao;Jinxin Cao
    • Wind and Structures
    • /
    • v.38 no.1
    • /
    • pp.59-74
    • /
    • 2024
  • Large Eddy Simulation (LES) is used to explore the influence of vibration frequency and amplitude on the aerodynamic performance of a rectangular cylinder with an aspect ratio of B/D=5 (B: breadth; D: depth of cylinder) at a Reynolds number of 22,000 near resonance frequency. In smooth flow conditions, the research employs a sequence of three-dimensional simulations under forced vibration with diverse frequency ratios fe / fo = 0.8-1.2 (fe : oscillation frequency; fo : Strouhal frequency when the rectangular cylinder is stationary ) and oscillation amplitudes Ah/D = 0.05 - 0.3. The individual influences of fe / fo and Ah/D on the characteristics of integrated and distributed aerodynamic forces are the focal points of discussion. For the integrated aerodynamic force, particular emphasis is placed on the analysis of the dependence of velocity-proportional component C1 and displacement-proportional component C2 of unsteady aerodynamic force on amplitude and frequency ratio. Near the resonance frequency, the dependencies of C1 and C2 on amplitude are stronger than that of frequency ratio. For the distributed aerodynamic force, the increase in frequency and amplitude promotes the position of the main vortex core and reattachment to the leading edge in the streamwise direction. In the spanwise direction, vibration enhances the spanwise correlation of aerodynamic force to weaken the three-dimensional effect of the flow field, and a lower frequency ratio and larger amplitude amplify this effect.

Unsteady Subsonic Aerodynamic Characteristics of Wing in Fold Motion

  • Jung, Yoo-Yeon;Kim, Ji-Hwan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.1
    • /
    • pp.63-68
    • /
    • 2011
  • Aerodynamic characteristics of a wing during fold motion were investigated in order to understand how variations or changes in such characteristics increase aircraft performance. Numerical simulations were conducted, and the results were obtained using the unsteady vortex lattice method to estimate the lift, drag and the moment coefficient in subsonic flow during fold motion. Parameters such as the fold angle and the fold angular velocity were summarized in detail. Generally, the lift and pitching moment coefficients decreased as the angle increased. In contrast, the coefficients increased as the angular velocity increased.

Study on the Optimum Rotor Blade Design of the 1 kW HAWT by BEMT (BEMT를 이용한 1 kW급 수평축 풍력발전용 로터 블레이드 형상 최적설계에 관한 연구)

  • Lee, Min-Woo;Kim, Jeong-Hwan;Kim, Jung-Ryul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.356-362
    • /
    • 2007
  • The optimum design and the performance analysis software called POSEIDON for the HAWT (Horizontal Axis Wind Turbine) was developed by use of BEMT. The Prandtl's tip loss theory was adopted to consider the blade tip loss. The aerodynamic characteristics of NACA 63-415 airfoils were predicted via X-FOIL and the post stall characteristics were estimated by the Viterna's equations. All the predicted aerodynamic characteristics are fairly well agreed with the Velux wind tunnel test results. The rated power of the testing rotor is 1 kW at design conditions. The power, estimated by use of predicted lift and drag coefficient via X-FOIL becomes a little higher than experimental one.

Wind load and wind-induced effect of the large wind turbine tower-blade system considering blade yaw and interference

  • Ke, S.T.;Wang, X.H.;Ge, Y.J.
    • Wind and Structures
    • /
    • v.28 no.2
    • /
    • pp.71-87
    • /
    • 2019
  • The yaw and interference effects of blades affect aerodynamic performance of large wind turbine system significantly, thus influencing wind-induced response and stability performance of the tower-blade system. In this study, the 5MW wind turbine which was developed by Nanjing University of Aeronautics and Astronautics (NUAA) was chosen as the research object. Large eddy simulation on flow field and aerodynamics of its wind turbine system with different yaw angles($0^{\circ}$, $5^{\circ}$, $10^{\circ}$, $20^{\circ}$, $30^{\circ}$ and $45^{\circ}$) under the most unfavorable blade position was carried out. Results were compared with codes and measurement results at home and abroad, which verified validity of large eddy simulation. On this basis, effects of yaw angle on average wind pressure, fluctuating wind pressure, lift coefficient, resistance coefficient,streaming and wake characteristics on different interference zone of tower of wind turbine were analyzed. Next, the blade-cabin-tower-foundation integrated coupling model of the large wind turbine was constructed based on finite element method. Dynamic characteristics, wind-induced response and stability performance of the wind turbine structural system under different yaw angle were analyzed systematically. Research results demonstrate that with the increase of yaw angle, the maximum negative pressure and extreme negative pressure of the significant interference zone of the tower present a V-shaped variation trend, whereas the layer resistance coefficient increases gradually. By contrast, the maximum negative pressure, extreme negative pressure and layer resistance coefficient of the non-interference zone remain basically same. Effects of streaming and wake weaken gradually. When the yaw angle increases to $45^{\circ}$, aerodynamic force of the tower is close with that when there's no blade yaw and interference. As the height of significant interference zone increases, layer resistance coefficient decreases firstly and then increases under different yaw angles. Maximum means and mean square error (MSE) of radial displacement under different yaw angles all occur at circumferential $0^{\circ}$ and $180^{\circ}$ of the tower. The maximum bending moment at tower bottom is at circumferential $20^{\circ}$. When the yaw angle is $0^{\circ}$, the maximum downwind displacement responses of different blades are higher than 2.7 m. With the increase of yaw angle, MSEs of radial displacement at tower top, downwind displacement of blades, internal force at blade roots all decrease gradually, while the critical wind speed decreases firstly and then increases and finally decreases. The comprehensive analysis shows that the worst aerodynamic performance and wind-induced response of the wind turbine system are achieved when the yaw angle is $0^{\circ}$, whereas the worst stability performance and ultimate bearing capacity are achieved when the yaw angle is $45^{\circ}$.

AERODYNAMIC ANALYSIS OF SUB-ORBITAL RE-ENTRY VEHICLE (저궤도 재진입 비행체의 공력해석)

  • Kim, C.W.;Lee, Y.G.;Lee, D.S.
    • Journal of computational fluids engineering
    • /
    • v.13 no.2
    • /
    • pp.1-7
    • /
    • 2008
  • For Aerodynamic analysis of vehicle at altitude, 100km, the validity of governing equations based on continuum model, was reviewed. Also, as the preliminary study for the sub-orbital space plane development, a candidate geometry was suggested and computational fluid dynamic(CFD) analysis was performed for various angles of attack in subsonic and supersonic flow regimes to analyze the aerodynamic characteristics and performance. The inviscid flow analyses showed that the stall starts at angle of attack above $20^{\circ}$, the maximum drag is generated at angle of attack, $87^{\circ}$ and the maximum lift to drag ratio is about 8 in subsonic flow. In supersonic, the stall angle is about $40^{\circ}$ and the maximum drag is generated at angle of attack, $90^{\circ}$. Also, mach number distribution of re-entry vehicle was computed versus altitudes.

Assessment of the aerodynamic and aerothermodynamic performance of a high-lift reentry vehicle

  • Pezzella, Giuseppe
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.2
    • /
    • pp.109-124
    • /
    • 2015
  • This paper deals with the aerodynamic and aerothermodynamic trade-off analysis of a hypersonic flying test bed. Such vehicle will have to be launched with an expendable launcher and shall re-enter the Earth atmosphere allowing to perform several experiments on critical re-entry phenomena. The demonstrator under study is a re-entry space glider characterized by a relatively simple vehicle architecture able to validate hypersonic aerothermodynamic design database and passenger experiments, including thermal shield and hot structures. A summary review of the aerodynamic characteristics of two flying test bed concepts, compliant with a phase-A design level, has been provided hereinafter. Several design results, based both on engineering approach and computational fluid dynamics, are reported and discussed in the paper.

Numerical Study on Thrust Characteristics of an External Pintle Thruster (노즐 목 외부형 핀틀추력기의 추력특성에 대한 수치해석 연구)

  • Choi, Junsub;Kim, Dongyeon;Huh, Hwanil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.12
    • /
    • pp.1071-1078
    • /
    • 2015
  • Numerical computations were performed to investigate the effects of pintle stroke, altitude, and bore on the performance of an external pintle thruster. Results show that under-expansion flow occurs always, independent of pintle stroke. An external pintle thruster shows good performance in that it is capable of good amount of thrust control, while aerodynamic loads are increased due to shock waves on the pintle support. When altitude is increased to 20 km, the nozzle exit velocity, Mach number, thrust as well as aerodynamic loads are increased. Bore increases aerodynamic load 5.9%, and therefore pintle shape without bore is preferred for lower aerodynamic load of a pintle in order to actuate the pintle.

Aerodynamic and Structural Design for Medium Size Horizontal Axis Wind Turbine Rotor Blade with Composite Material (복합재를 이용한 수평축 풍력터빈 회전 날개의 공력 및 구조설계에 관한 연구)

  • 공창덕;방조혁;오동우;김기범;김학봉
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.2
    • /
    • pp.12-21
    • /
    • 1997
  • Nowadays, non-pollution energy sources have been strongly needed because of the exhaustion of fossil fuels and serious environmental problems. Because wind energy can be enormously obtained from natural atmosphere, this type of energy has lots of advantages in a economic and pollution point of view. This study has established the aerodynamic and structural design procedure of the rotor blade with an appropriate aerodynamic performance and structural strength for the 500㎾ medium class wind turbine system. The aerodynamic configuration of the rotor blade was determined by considering the wind condition in the typical local operation region, and based on this configuration aerodynamic performance analysis was performed. The rotor blade has the shell-spar structure based on glass/epoxy composite material and is composed of shank including metal joint parts and blade. Structural design was done by the developed design program in this study and structural analysis, for instance stress analysis, mode analysis and fatigue life estimation, was performed by the finite element method. As a result, a medium scale wind turbine rotor blade with starting characteristics of 4m/s wind speed, rated power of 500㎾ at 12m/s wind speed and over 20 years fatigue life has been designed.

  • PDF

The Study of Aerodynamic Characteristics of Ram-jet with Different Intake (서로 다른 램제트 흡입구에 따른 공기역학적 특성 연구)

  • Park, Soon-Jong;Park, Jong-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.6
    • /
    • pp.9-16
    • /
    • 2010
  • The SFRJ(Solid Fuel Ram-Jet) propulsion is attractive for projectiles because of the combination of high propulsive performance and low system complexity more than conventional projectiles. The Objective of this research was to characterize the inlet aerodynamic characteristics (center-body & pitot type) in SFRJ. Diffuser static pressure & combustion chamber pressure was tested and the AoA was changed $0^{\circ}$ and $4^{\circ}$ at Mach number of 3.0 for performance estimate. The performance study of inlet was carried out with the Schlieren system and Supersonic cold-flow system. Under mach 3.0, the center-body showed twice higher total pressure recovering ratio than the pitot type. A Computational fluid dynamic solution is applied internal flow of inlet and the solutions are compared with experimental results.