• Title/Summary/Keyword: Aerodynamic Loss

Search Result 147, Processing Time 0.023 seconds

Three-Dimensional Flow Characteristics in a Linear Turbine Cascade Passage (선형 터빈 케스케이드 통로에서의 3차원 유동 특성)

  • 차봉준;이상우;이대성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3148-3165
    • /
    • 1993
  • A cascade wind tunnel test for a turbine nozzle, which was designed for a small turbo jet engine in a previous study, has been conducted to evaluate its aerodynamic performance and losses. The large-scale blades were based on the mid-span profile of the nozzle. Oil film flow structure, and then 3-dimensional velocity components were measured in the flow passage with a 5-hold pressure probe, in addition to turbulent intensities at mid-span of cascade exit using a hot-wire anemometer. From this study, 3-dimensional growth of horseshoe and passage vortices in the downstream direction was clearly understood with near-wall flow phenomena. In addition, secondary flow and losses associated with the blade configuration were obtained in detail.

Design Program of Centrifugal Backward-Bladed and Forward-Bladed Fans (원심형 후향익 및 원심다익홴의 설계 프로그램)

  • Park, J.-C.;Son, J.-M;Lee, S.;Jo, S.-M.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.48-53
    • /
    • 2001
  • A centrifugal fan design code was developed and included in $DasignFan^{TM}$. This program generates forward -curved and backward-curved bladed centrifugal fan data. With the inverse design concept used in the code, the period of designing a fm, which has given aerodynamic performance with minimal acoustic noise, is significantly shortened.. A centrifugal fan design code, developed in this study and included in $DasignFan^{TM}$, predicts the aerodynamic performance by using mean-line analysis and various loss models. In the period of design a lift force distribution between pressure side and suction side of blade is calculated. And then it is used to calculate steady loading noise from the impeller.

  • PDF

Development of the Computer Program for Predicting the Aero-acoustic Performance in the Design Process of Axial Flow Fan (축류형 송풍기 설계 과정에서 공력-음향학적 성능 예측을 위한 전산 프로그램의 개발)

  • Chung, Dong-Kyu;Hong, Soon-Seong;Lee, Chan
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.91-98
    • /
    • 2000
  • Developed is a computer program for the prediction of the aero-acoustic performance characteristics such as discharge pressure, efficiency, power and noise level in the basic design step of axial flow fan. The flow field and the aerodynamic performance of fan are analyzed by using the streamline curvature computing scheme with total pressure loss and flow deviation models. Fan noise is assumed to be generated due to the pressure fluctuations induced by wake vortices of fan blades and to radiate via dipole distribution. The vortex-induced fluctuating pressure on blade surface is calculated by combining thin airfoil theory and the predicted flow field data. The predicted aerodynamic performances, sound pressure level and noise directivity patterns of fan by the present computer program are favorably compared with the test data of actual fan. Furthermore, the present computer program is shown to be very useful in optimizing design variables of fan with high efficiency and low noise level and in analyzing their design sensitivities.

  • PDF

CFD SIMULATION AND ANALYSIS OF AERODYNAMIC CHARACTERISTICS OF SMALL DUCTED FAN AIRCRAFT (소형 덕트 팬 항공기의 전산해석 및 공력특성 분석)

  • Kim, C.W.;Choi, S.W.;Ahn, S.M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.14-16
    • /
    • 2010
  • A Duct surrounding a fan is known to reduce the tip loss and increase the fan performance efficiency. It also reduces the fan noise drastically. Ducted fan, therefore, has been focused to be a promising candidate for high efficient propulsion system. In this study, a small plane having ducted fan which can be tilted for vertical take-off and landing, is analyzed by CFD and its aerodynamic characteristics are compared. Ductef fan aircraft has small range of angle of attack for mininum drag and duct design should be focused for efficient ducted fan aircraft.

  • PDF

High Speed Scanner Motor for High Performance Laser Printer (고성능 레이저 프린터용 고속 스캐너모터)

  • Sung, Bu-Ryun;Kim, Sung-Min;Woo, Ki-Myung;Choa, Sung-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.829-836
    • /
    • 2000
  • High performance laser printer requires high speed scanning motor, which can operate up to 40,000 rpm. However, development of high speed scanning motor has been restricted due to the practical problems such as use of high speed bearing, compact circuit design and high cost. In this study, we designed a high speed scanner motor for use on laser scanning unit and discussed some design principles including the reduction method of cogging torque of the motor, development of hemispherical aerodynamic bearing, windage loss estimation, and operating circuit design to reduce noise.

  • PDF

Effects of shrouded cavity on loss in axial compressor cascade (압축기 슈라우드 캐비티에 기인한 손실 해석)

  • Lee, Jae Seok;Kim, Jin Hee;Kim, Tongbeum;Song, Seung Jin
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.427-433
    • /
    • 2004
  • The effects of flow interaction between mainstream and shrouded cavity leakage flow in an axial-flow compressor on aerodynamic losses are experimentally and numerically examined. A fraction of mainstream is Ingested in the downstream cavity and travelled in the shrouded cavity along the direction opposite to the mainstream. This leakage flow is caused by adverse pressure gradient along the blade passage. Then it is entrained through the upstream cavity near mid-pitch and interacts with the mainstream. As a result, the convection flow angle with respect to the blade chord is reduced i.e. underturning This underturned flow results in an increase in size of secondary flow formed near the suction side of the blade as well as its magnitude. Consequently, this causes pronounced increase in overall aerodynamic losses compared to the blading without shrouded cavity, leading to $9\%$ decrease in pressure rise through the single stage of the stators.

  • PDF

An experimental study on the secondary flow and losses in turbine cascades (익렬 통로 내의 2차유동 및 손실에 관한 실험 연구)

  • Jeong, Yang-Beom;Sin, Yeong-Ho;Kim, Sang-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.1
    • /
    • pp.12-24
    • /
    • 1998
  • The paper presents the mechanism of secondary flows and the associated total pressure losses occurring in turbine cascades with turning angle of about 127 and 77 degree. Velocity and pressure measurements are taken in seven traverse planes through the cascade passage using a prism type five hole probe. Oil-film flow visualization is also conducted on blade and endwall surfaces. The characteristics of the limiting streamlines show that the three dimensional separation is an important flow feature of endwall and blade surfaces. The larger turning results in much stronger contribution of the secondary flows to the loss developing mechanism. A large part of the endwall loss region at downstream pressure side is found to be very thin when compared to that of the cascade inlet and suction side endwall. Evolution of overall loss starts quite early within the cascade and the rate of the loss growth is much larger in the blade of large turning angle than in the blade of small turning angle.

Numerical Analysis of Heat Transfer and Flow Characteristics on Squealer Tip of Gas Turbine Blade (가스터빈 블레이드 팁의 열전달과 유동 특성에 대한 수치적 해석)

  • Jiao, Liu;Kang, Youngseok;Kim, Donghwa;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.12
    • /
    • pp.1062-1070
    • /
    • 2016
  • The heat transfer and flow characteristics of gas turbine blade tip were investigated in this paper by using the conjugate heat transfer analysis. The rotor inlet boundary condition profile which was taken from the first stage nozzle outlet was used to analyse. The profile contained the velocity and temperature information. This study presents the influence of tip clearance about aerodynamic loss, heat transfer coefficient and film cooling effectiveness with the squealer tip designed blade model which tip clearance variation range from 1% to 2.5% of span. Results showed that the aerodynamic loss and the heat transfer coefficient were increased when the tip clearance was increased. Especially when the tip clearance was 2% of the span, the average heat transfer coefficient on the tip region was increased obviously. The film cooling effectiveness of tip region was increasing with decreasing of the tip clearance. There was high film cooling effectiveness at cavity and near tip hole region.

Three-dimensional Flow and Aerodynamic Loss Downstream of First-Stage Turbine Vane Cascade (터빈 제1단 정익 익렬 하류에서의 3차원 유동 및 압력손실)

  • Jeong, Jae Sung;Bong, Seon Woo;Lee, Sang Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.8
    • /
    • pp.521-529
    • /
    • 2017
  • Three-dimensional flow characteristics within a high-acceleration first-stage turbine vane passage has been investigated in a newly-built vane cascade for propulsion. The result shows that there is a strong favorable pressure gradient on the vane pressure surface. On its suction surface, however, there exists not only a much stronger favorable pressure gradient than that on the pressure surface upstream of the mid-chord but also a subsequent adverse pressure gradient downstream of it. By employing two different oil-film methods with upstream coating and full-coverage coating, a four-vortex model horseshoe vortex system can be identified ahead of each leading edge in the cascade, and the separation line of inlet boundary layer flow as well as the separation line of re-attached flow is provided as well. In addition, basic flow data such as secondary flow, aerodynamic loss, and flow turning angle downstream of the cascade are obtained.

Reynolds Number Effects on Aerodynamic Characteristics of Compressor Cascades for High Altitude Long Endurance Aircraft

  • Kodama, Taiki;Watanabe, Toshinori;Himeno, Takehiro;Uzawa, Seiji
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.195-201
    • /
    • 2008
  • In the jet engines on the aircrafts cruising at high altitude over 20 km and subsonic speed, the Reynolds number in terms of the compressor blades becomes very low. In such an operating condition with low Reynolds number, it is widely reported that total pressure loss of the air flow through the compressor cascades increases dramatically due to separation of the boundary layer and the secondary-flow. But the detail of flow mechanisms causes the total pressure loss has not been fully understood yet. In the present study, two series of numerical investigations were conducted to study the effects of Reynolds number on the aerodynamic characteristics of compressor cascades. At first, the incompressible flow fields in the two-dimensional compressor cascade composed of C4 airfoils were numerically simulated with various values of Reynolds number. Compared with the corresponding experimental data, the numerically estimated trend of total pressure loss as a function of Reynolds number showed good agreement with that of experiment. From the visualized numerical results, the thickness of boundary layer and wake were found to increase with the decrease of Reynolds number. Especially at very low Reynolds number, the separation of boundary layer and vortex shedding were observed. The other series, as the preparatory investigation, the flow fields in the transonic compressor, NASA Rotor 37, were simulated under the several conditions, which corresponded to the operation at sea level static and at 10 km of altitude with low density and temperature. It was found that, in the case of operation at high altitude, the separation region on the blade surface became lager, and that the radial and reverse flow around the trailing edge become stronger than those under sea level static condition.

  • PDF