• Title/Summary/Keyword: Aerodynamic Loads

Search Result 227, Processing Time 0.025 seconds

Variation in wind load and flow of a low-rise building during progressive damage scenario

  • Elshaer, Ahmed;Bitsuamlak, Girma;Abdallah, Hadil
    • Wind and Structures
    • /
    • v.28 no.6
    • /
    • pp.389-404
    • /
    • 2019
  • In coastal regions, it is common to witness significant damages on low-rise buildings caused by hurricanes and other extreme wind events. These damages start at high pressure zones or weak building components, and then cascade to other building parts. The state-of-the-art in experimental and numerical aerodynamic load evaluation is to assume buildings with intact envelopes where wind acts only on the external walls and correct for internal pressure through separate aerodynamic studies. This approach fails to explain the effect of openings on (i) the external pressure, (ii) internal partition walls; and (iii) the load sharing between internal and external walls. During extreme events, non-structural components (e.g., windows, doors or rooftiles) could fail allowing the wind flow to enter the building, which can subject the internal walls to lateral loads that potentially can exceed their load capacities. Internal walls are typically designed for lower capacities compared to external walls. In the present work, an anticipated damage development scenario is modelled for a four-story building with a stepped gable roof. LES is used to examine the change in the internal and external wind flows for different level of assumed damages (starting from an intact building up to a case with failure in most windows and doors are observed). This study demonstrates that damages in non-structural components can increase the wind risk on the structural elements due to changes in the loading patterns. It also highlights the load sharing mechanisms in low rise buildings.

Aerodynamic assessment of airfoils for use in small wind turbines

  • Okita, Willian M.;Ismail, Kamal A.R.
    • Advances in Energy Research
    • /
    • v.6 no.1
    • /
    • pp.35-54
    • /
    • 2019
  • A successful blade design must satisfy some criterions which might be in conflict with maximizing annual energy yield for a specified wind speed distribution. These criterions include maximizing power output, more resistance to fatigue loads, reduction of tip deflection, avoid resonance and minimize weight and cost. These criterions can be satisfied by modifying the geometrical parameters of the blade. This study is dedicated to the aerodynamic assessment of a 20 kW horizontal axis wind turbine operating with two possible airfoils; that is $G{\ddot{o}}ttingen$ 413 and NACA 2415 airfoils (the Gottingen airfoil never been used in wind turbines). For this study parameters such as chord (constant, tapered and elliptic), twist angle (constant and linear) are varied and applied to the two airfoils independently in order to determine the most adequate blade configuration that produce the highest annual energy output. A home built numerical code based on the Blade Element Momentum (BEM) method with both Prandtl tip loss correction and Glauert correction, X-Foil and Weibull distribution is developed in Matlab and validated against available numerical and experimental data. The results of the assessment showed that the NACA 2415 airfoil section with elliptic chord and constant twist angle distributions produced the highest annual energy production.

A Study on Structural Design and Analysis of Composite Fairing to Reduce Air Resistance (공기 저항력 저감을 위한 복합재 페어링 구조 설계 및 해석 연구)

  • Yonggyu, Lee;Hyunbum, Park
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.6
    • /
    • pp.64-73
    • /
    • 2022
  • This study aimed to design a 3D fairing shape to reduce the air resistance of commercial vehicles. Rankine Half Body was applied to design the fairing shape, and the design was verified through aerodynamic analysis. Aerodynamic loads were calculated considering the speed conditions of commercial vehicles and gust conditions to ensure the structural safety of the fairing. A glass fibre/epoxy composite material was used to design a fairing structure that satisfied the safety factor 3. The structural safety of the lightest fairing was confirmed through structural analysis.

Dynamic analysis of wind-vehicle-bridge system considering additional moments of non-uniform winds by wind shielding effect of multi-limb tower

  • Xu Han;Huoyue Xiang;Xuli Chen;Yongle Li
    • Wind and Structures
    • /
    • v.36 no.1
    • /
    • pp.1-14
    • /
    • 2023
  • To evaluate the wind shielding effect of bridge towers with multiple limbs on high-speed trains, a wind tunnel test was conducted to investigate the aerodynamic characteristics of vehicles traversing multi-limb towers, which represented a combination of the steady aerodynamic coefficient of the vehicle-bridge system and wind environment around the tower. Subsequently, the analysis model of wind-vehicle-bridge (WVB) system considering the additional moments caused by lift and drag forces under nonuniform wind was proposed, and the reliability and accuracy of the proposed model of WVB system were verified using another model. Finally, the factors influencing the wind shielding effect of multi-limb towers were analyzed. The results indicate that the wind speed distributions along the span exhibit two sudden changes, and the wind speed generally decreases with increasing wind direction angle. The pitching and yawing accelerations of vehicles under nonuniform wind loads significantly increase due to the additional pitching and yawing moments. The sudden change values of the lateral and yawing accelerations caused by the wind shielding effect of multi-limb tower are 0.43 m/s2 and 0.11 rad/s2 within 0.4 s, respectively. The results indicate that the wind shielding effect of a multi-limb tower is the controlling factor in WVB systems.

Aeroelastic stability analysis of a two-stage axially deploying telescopic wing with rigid-body motion effects

  • Sayed Hossein Moravej Barzani;Hossein Shahverdi
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.5
    • /
    • pp.419-437
    • /
    • 2023
  • This paper presents the study of the effects of rigid-body motion simultaneously with the presence of the effects of temporal variation due to the existence of morphing speed on the aeroelastic stability of the two-stage telescopic wings, and hence this is the main novelty of this study. To this aim, Euler-Bernoulli beam theory is used to model the bending-torsional dynamics of the wing. The aerodynamic loads on the wing in an incompressible flow regime are determined by using Peters' unsteady aerodynamic model. The governing aeroelastic equations are discretized employing a finite element method based on the beam-rod model. The effects of rigid-body motion on the length-based stability of the wing are determined by checking the eigenvalues of system. The obtained results are compared with those available in the literature, and a good agreement is observed. Furthermore, the effects of different parameters of rigid-body such as the mass, radius of gyration, fuselage center of gravity distance from wing elastic axis on the aeroelastic stability are discussed. It is found that some parameters can cause unpredictable changes in the critical length and frequency. Also, paying attention to the fuselage parameters and how they affect stability is very important and will play a significant role in the design.

Experimental and numerical studies on VIV characteristics of π-shaped composite deck of a cable-stayed bridge with 650 m main span

  • Wei Lei;Qi Wang;Haili Liao;Chengkai Shao
    • Wind and Structures
    • /
    • v.38 no.2
    • /
    • pp.93-107
    • /
    • 2024
  • A π-shaped composite deck in the form of an open section is a type of blunt body that is highly susceptible to wind loads. To investigate its vortex-induced vibration (VIV) performance, a large-scale (1/20) section model of a cable-stayed bridge with a main span of 650 m was tested in a wind tunnel. The vibration suppression mechanism of the countermeasures was analyzed using computational fluid dynamic. Experimental results demonstrate that the vertical and torsional VIVs of the original section can be suppressed by combining guide plates with a tilt angle of 35° and bottom central stabilizing plates as aerodynamic countermeasures. Numerical results indicate that the large-scale vortex under the deck separates into smaller vortices, resulting in the disappearance of the von Kármán vortex street in the wake zone because the countermeasures effectively suppress the VIVs. Furthermore, a full-bridge aeroelastic model with a scale of 1/100 was constructed and tested to evaluate the wind resistance performance and validate the effectiveness of the proposed countermeasures.

Influences of Blowing Jet Type and Jet Angle on the Flow Control of Elliptic Airfoil (타원형 날개꼴의 유동제어에서 브로잉 제트 형태와 제트 각도의 영향)

  • Lee, Ki-Young;Sohn, Myong-Hwan;Jang, Young-Il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.47-53
    • /
    • 2004
  • An Experimental investigation into the effects of the blowing jet type and jet orientation on the aerodynamic characteristics over an elliptic type airfoil is explored. This study is aimed at expanding the data base of blowing jet application in separation control of elliptic airfoil. Present data includes: surface pressure, blowing jet exit velocity measurements and integrated aerodynamic loads. The experiments were performed for an elliptic airfoil at Reynolds number $8.22{\times}10^5$. The improvement of effects of pulsed jet on the increase of aerodynamic characteristics was significant for the post-stall angle. For reduced mass flow rates, pulsed jet allowed considerably higher lift to be generated. The jet orientation also showed dominant parameter on the separation control Positive jet angle delay or avoid separation, whereas negative jet angle promotes it.

Numerical Flow Simulation of a UH-60A Full Rotorcraft Configuration in Forward Flight (전진비행하는 UH-60A 헬리콥터 전기체 형상에 대한 유동 해석)

  • Lee, Hee-Dong;Kwon, Oh-Joon;Kang, Hee-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.6
    • /
    • pp.519-529
    • /
    • 2010
  • In the present study, unsteady calculations have been performed to simulate flows around a UH-60A full configuration including main rotor, fuselage, and tail rotor. A flow solver developed for helicopter aerodynamic analysis was used for the simulation of the complete helicopter in high-speed and low-speed forward flight. Unsteady vibratory loads on the main rotor blades were compared with flight test and other calculated data for the assessment of the present flow solver. Aerodynamic interaction of the three components of the helicopter was investigated by comparing with the results of main-rotor-alone, main rotor and fuselage, and tail-rotor-alone configurations. It was found that the existence of the fuselage has an effect on the normal force distribution of the main rotor by varying downwash distribution on the rotor disc, and tip vortices trailed from the main rotor strongly interact with the tail-rotor.

Design of KUH Main Rotor Small-scaled Blade (KUH 주로터 축소 블레이드 설계)

  • Kim, Do-Hyung;Kim, Seung-Ho;Han, Jung-Ho
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.32-41
    • /
    • 2009
  • In this study, scale-down design of full-scale Korean Utility Helicopter (KUH) main rotor blade has been investigated. The scaled model system were designed for the measurement of aerodynamic performance, tip vortex and noise source. For the purpose of considering the same aerodynamic loads, the Mach-scale method has been applied. The Mach-scaled model has the same tip Mach number, and it also has the same normalized frequencies. That is, the Mach-scaled model is analogous to full-scale model in the view point of aerodynamics and structural dynamics. Aerodynamic scale-down process could be completed just by adjusting scaling dimensions and increasing rotating speed. In the field of structural dynamics, design process could be finished by confirming the rotating frequencies of the designed blade with the stiffness and inertial properties distributions produced by sectional design. In this study, small-scaled blade sectional design were performed by applying domestic composite prepregs and structural dynamic characteristics of designed model has been investigated.

  • PDF

Research on aerodynamic force and structural response of SLCT under wind-rain two-way coupling environment

  • Ke, Shitang;Yu, Wenlin;Ge, Yaojun
    • Wind and Structures
    • /
    • v.29 no.4
    • /
    • pp.247-270
    • /
    • 2019
  • Wind-resistant design of existing cooling tower structures overlooks the impacts of rainfall. However, rainstorm will influence aerodynamic force on the tower surface directly. Under this circumstance, the structural response of the super-large cooling tower (SLCT) will become more complicated, and then the stability and safety of SLCT will receive significant impact. In this paper, surrounding wind fields of the world highest (210 m) cooling tower in Northwest China underthree typical wind velocities were simulated based on the wind-rain two-way coupling algorithm. Next, wind-rain coupling synchronous iteration calculations were conducted under 9 different wind speed-rainfall intensity combinations by adding the discrete phase model (DPM). On this basis, the influencing laws of different wind speed-rainfall intensity combinations on wind-driving rain, adhesive force of rain drops and rain pressure coefficients were discussed. The acting mechanisms of speed line, turbulence energy strength as well as running speed and trajectory of rain drops on structural surface in the wind-rain coupling field were disclosed. Moreover, the fitting formula of wind-rain coupling equivalent pressure coefficient of the cooling tower was proposed. A systematic contrast analysis on its 3D distribution pattern was carried out. Finally, coupling model of SLCT under different working conditions was constructed by combining the finite element method. Structural response, buckling stability and local stability of SLCT under different wind velocities and wind speed-rainfall intensity combinations were compared and analyzed. Major research conclusions can provide references to determine loads of similar SLCT accurately under extremely complicated working conditions.