• Title/Summary/Keyword: Aerodynamic Load Analysis

Search Result 113, Processing Time 0.024 seconds

The Design and Analysis of Composite Advanced Propeller Blade for Next Generation Turboprop Aircraft (차세대 터보프롭 항공기용 복합재 최신 프로펠러 설계 및 해석)

  • Choi, Won;Kim, Kwang-Hae;Lee, Won-Joong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.6
    • /
    • pp.11-17
    • /
    • 2012
  • The one way fluid structure interaction analysis on advanced propeller blade for next generation turboprop aircraft. HS1 airfoil series are selected as a advanced propeller blade airfoil. Adkins method is used for aerodynamic design and performance analysis with respect to the design point. Adkins method is based on the vortex-blade element theory which design the propeller to satisfy the condition for minimum energy loss. propeller geometry is generated by varying chord length and pitch angle at design point. Blade sweep is designed based on the design mach number and target propulsion efficiency. The aerodynamic characteristics of the designed Advanced propeller were verified by CFD(Computational Fluid Dynamic) and showed the enhanced performance than the conventional propeller. The skin-foam sandwich structural type is adopted for blade. The high stiffness, strength carbon/epoxy composite material is used for the skin and PMI(Polymethacrylimide) is used for the foam. Aerodynamic load is calculated by computational fluid dynamics. Linear static stress analysis is performed by finite element analysis code MSC.NASTRAN in order to investigate the structural safety. The result of structural analysis showed that the design has sufficient structural safety. It was concluded that structural safety assessment should incorporate the off-design points.

Multi-body Dynamic Structural Dynamic Analysis of a Canopy System for Supersonic Fighter Considering Backup Emergency Egress Conditions (대체 비상탈출 조건을 고려한 초음속 전투기용 캐노피 작동부 구조해석)

  • Kim, Dong-Hyun;Kim, Dong-Man;Kim, Young-Woo;Yang, Jian-Ming
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.81-87
    • /
    • 2007
  • In this study, analysis of structural design criteria for the canopy actuating device has been conducted considering the aerodynamic breakaway capabilities of jettisonable canopy system. Unsteady aerodynamic loads for the opened canopy configuration at passively controlled jettision mode were computed using CFD method. The general purpose multi-body finite element code, SAMCEF Mecano, is used in the implemented analyses for the passive jettision condition. The recommended altitude and speed of aircraft was suggested as design criteria of aerodynamic breakaway capability of jettisonable canopy system as a bakup egress method when normal canopy jettison sequence malfunctioned. Aerodynamic breakaway condition of jettisonable canopy was also simulated and the fracture load conditions of canopy actuator were investigated.

Development of a Lift Correction Method for Shear Flow Effects in BEM Theory (BEM 이론을 위한 전단유동 효과 보정 기법 개발)

  • Lee, Kyung Seh;Jung, Chin Hwa;Park, Hyun Chul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.57.2-57.2
    • /
    • 2011
  • In this study, the effects of shear flows around a 2-dimensional airfoil, S809 on its aerodynamic characteristics were analyzed by CFD simulations. Various parameters including reference inflow velocity, shear rate, angle of attack, and cord length of the airfoil were examined. From the simulation results, several important characteristics were found. Shear rate in a flow makes some changes in the lift coefficient depending on its sign and magnitude but angle of attack does not have a distinguishable influence. Cord length and reference inflow also cause proportional and inversely proportional changes in lift coefficient, respectively. We adopted an analytic expression for the lift coefficient from the thin airfoil theory and proposed a modified form applicable to the traditional load analysis procedure based on the blade element momentum theory. Some preliminary results applied to an well known load simulation software, FAST, are presented.

  • PDF

Nonlinear Aeroelastic Analysis of a High-Aspect-Ratio Wing with Large Deflection Effects

  • Kim, Kyung-Seok;Lim, In-Gyu;Lee , In;Yoo, Jae-Han
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.99-105
    • /
    • 2006
  • In this study, nonlinear static and dynamic aeroelastic analyses for a high-aspect-ratio wing have been performed. To achieve these aims, the transonic small disturbance (TSD) theory for the aerodynamic analysis and the large deflection beam theory considering a geometrical nonlinearity for the structural analysis are applied, respectively. For the coupling between fluid and structure, the transformation of a displacement from the structural mesh to the aerodynamic grid is performed by a shape function which is used for the finite element and the inverse transformation of force by work equivalent load method. To validate the current method, the present analysis results of a high-aspect-ratio wing are compared with the experimental results. Static deformations in the vertical and torsional directions caused by an angle of attack and gravity loading are compared with experimental results. Also, static and dynamic aeroelastic characteristics are investigated. The comparisons of the flutter speed and frequency between a linear and nonlinear analysis are presented.

Study of structural parameters on the aerodynamic stability of three-tower suspension bridge

  • Zhang, Xin-Jun
    • Wind and Structures
    • /
    • v.13 no.5
    • /
    • pp.471-485
    • /
    • 2010
  • In comparison with the common two-tower suspension bridge, due to the lack of effective longitudinal restraint of the center tower, the three-tower suspension bridge becomes a structural system with greater flexibility, and more susceptible to the wind action. By taking a three-tower suspension bridge-the Taizhou Bridge over the Yangtze River with two main spans of 1080 m as example, effects of structural parameters including the cable sag to span ratio, the side to main span ratio, the deck's dead load, the deck's bearing system, longitudinal structural form of the center tower and the cable system on the aerodynamic stability of the bridge are investigated numerically by 3D nonlinear aerodynamic stability analysis, the favorable structural system of three-tower suspension bridge with good wind stability is discussed. The results show that good aerodynamic stability can be obtained for three-tower suspension bridge as the cable sag to span ratio is assumed ranging from 1/10 to 1/11, the central buckle are provided between main cables and the deck at midpoint of main spans, the longitudinal bending stiffness of the center tower is strengthened, and the spatial cable system or double cable system is employed.

Flight Loads Analysis of Smart UAV (스마트 무인기 비행하중 해석)

  • Shin, Jeong-Woo;Lee, Sang-Wook;Kim, Sung-Joon;Kim, Tae-Uk;Kim, Sung-Chan;Hwang, In-Hee
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.513-518
    • /
    • 2004
  • KARI(Korea Aerospace Research Institute) has developed smart unmaned aerial vehicle(UAV) since 2002. Smart UAV has tilt rotor configuration which can take off and land vertically. For designing and developing smart UAV, it is necessary to obtain design loads. ARGON which use the panel method is multidisciplinary aircraft design program developed and modified by KARI and TsAGI. Panel method is very useful to obtain aerodynamic loads, so it have been used widely for aircraft loads analysis. For flight loads analysis, we have to prepare regulations and load conditions, and then design aerodynamic panel model, mass model and structure model. In this paper, we introduce the flight loads analysis procedure briefly, and show the smart UAV loads analysis procedure and result using ARGON.

  • PDF

AERODYNAMIC DESIGN AND PERFORMANCE PREDICTION OF ROTOR BLADES IN A SINGLE-STAGE AXIAL FAN USING CFD METHODS (전산해석기법에 의한 단단 축류팬 동익의 공력설계 및 성능 예측)

  • Kim, E.S.;Chung, H.T.
    • Journal of computational fluids engineering
    • /
    • v.19 no.2
    • /
    • pp.93-98
    • /
    • 2014
  • In the present study, CFD methods are applied in the design procedure of rotor blades in a axial-flow fan and the aerodynamic performances are predicted. The blade profiles initially determined by the free vortex method and empirical formula are modified to match the target value of the rotor work load through the analysis of 3D Navier-Stokes solver. The corrected shapes of the rotor blade showed the increase of the efficiency and the pressure simultaneously.

ASCENT THERMAL ANALYSIS OF FAIRING OF SPACE LAUNCH VEHICLE

  • Choi Sang-Ho;Kim Seong-Lyong;Kim Insun
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.239-242
    • /
    • 2004
  • The fairing of the launch vehicles has a role of protecting the spacecraft from outer thermal, acoustical, and mechanical loads during flight. Among them, the thermal load is analyzed in the present study. The ascent thermal analyses include aerodynamic heating rate on every point of the fairing, heat transfer through the fairing and spacecraft, and the final temperature during ascent flight phase. A design code based on theoretical/experimental database is applied to calculate the aerodynamic heating rate, and a thermal math program, SINDA/Fluint, is considered for conductive heat transfer of the fairing. The results show that the present design satisfies the allowing temperature of the structure. Another important thermal problem, pyro explosive fairing separation device, is calculated because the pyro system is very sensitive to the temperature. The results also satisfies the pyro thermal condition.

  • PDF

Study on a 500W Class Wind Turbine using a High Efficiency Composite Blades (고효율 복합재 블레이드를 사용한 500W급 풍력터빈에 관한 연구)

  • Kong, Chang-Duk;Choi, Su-Hyun;Park, Hyun-Bum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.201-208
    • /
    • 2009
  • Recently, the wind energy has been widely used as a renewable energy resource due to lack and environmental issues of the mostly used fossil fuel. This work is to develop a 500W class small wind turbine blade which will be applicable to relatively low speed region like Korea and for the domestic use. For this blade a high efficiency wind turbine blade was designed with the proposing aerodynamic design procedure, and a light and low cost composite structure blade was designed considering fatigue life. Structural analyses including load case study, stress, deformation, buckling and vibration analysis were performed using the Finite Element Method. The fatigue life was estimated using the load spectrum analysis and the Miner rule. In order to evaluate the designed blade, the structural and aerodynamic performance tests were carried out, and the test results were compared with the analysis results.

Transonic Aeroelastic Analysis of a Airfoil with Friction Damping (마찰 감쇠를 고려한 에어포일의 천음속 공탄석 해석)

  • Yoo, Jae-Han;Lee, In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.11
    • /
    • pp.1075-1080
    • /
    • 2010
  • For the aeroelastic analysis of a wing with friction damping, coupled time integration method was used to obtain time responses in the subsonic and transonic regions. To take into account aerodynamic nonlinearity induced by shock wave on the lifting surface, transonic small disturbance equation with in-phase periodic boundary condition was used for unsteady aerodynamic calculation. For 2-DOF airfoil system with displace-dependent friction dampers, the effects of normal load slope and Mach number on flutter boundary were investigated.