• 제목/요약/키워드: Aerodynamic Instability

검색결과 103건 처리시간 0.024초

Rotordynamci Effects Due to Aerodynamic Instability in a Turbo-compressor with Air Foil Bearings (공기 포일 베어링으로 지지되는 터보 압축기의 공력 불안정성이 로터에 미치는 진동 영향)

  • Kim, Tae-Ho;Lee, Yong-Bok;Kim, Chang-Ho;Kim, Kwang-Ho;Lee, Nam-Soo
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.191-198
    • /
    • 2002
  • Oil-free turbo-compressor supported by compliant foil bearings which remove oil-contamination by elimination of the conventional ball bearing and oil lubrication systems is presented. Turbo-compressor makes two individual air compression with two impellers at operating speed, 39,000rpm. In this study, the rotordynamic effects caused by aerodynamic instability were investigated with variable mass flow rate. Correlation between frequencies of pressure fluctuation in two diffusers and those of excitation forces on rotor were clearly developed in aerodynamic unsteady region. Thus, these results show that it is beneficial to design high speed rotating turbomachinery considering coupling effect between aerodynamic instability and rotordynamic force.

  • PDF

Investigation on the wind-induced instability of long-span suspension bridges with 3D cable system

  • Zhang, Xin-Jun
    • Wind and Structures
    • /
    • 제14권3호
    • /
    • pp.209-220
    • /
    • 2011
  • The cable system is generally considered to be a structural solution to increase the spanning capacity of suspension bridges. In this work, based on the Runyang Bridge over the Yangtze River, three case suspension bridges with different 3D cable systems are designed, structural dynamic characteristics, the aerostatic and aerodynamic stability are investigated numerically by 3D nonlinear aerostatic and aerodynamic analysis, and the cable system favorable to improve the wind-induced instability of long-span suspension bridges is also proposed. The results show that as compared to the example bridge with parallel cable system, the suspension bridge with inward-inclined cable system has greater lateral bending and tensional frequencies, and also better aerodynamic stability; as for the suspension bridge with outward-inclined cable system, it has less lateral bending and tensional frequencies, and but better aerostatic stability; however the suspension bridge is more prone to aerodynamic instability, and therefore considering the whole wind-induced instability, the parallel and inward-inclined cable systems are both favorable for long-span suspension bridges.

Aerodynamic stability analysis of geometrically nonlinear orthotropic membrane structure with hyperbolic paraboloid in sag direction

  • Xu, Yun-ping;Zheng, Zhou-lian;Liu, Chang-jiang;Wu, Kui;Song, Wei-ju
    • Wind and Structures
    • /
    • 제26권6호
    • /
    • pp.355-367
    • /
    • 2018
  • This paper studies the aerodynamic stability of a tensioned, geometrically nonlinear orthotropic membrane structure with hyperbolic paraboloid in sag direction. Considering flow separation, the wind field around membrane structure is simulated as the superposition of a uniform flow and a continuous vortex layer. By the potential flow theory in fluid mechanics and the thin airfoil theory in aerodynamics, aerodynamic pressure acting on membrane surface can be determined. And based on the large amplitude theory of membrane and D'Alembert's principle, interaction governing equations of wind-structure are established. Then, under the circumstance of single-mode response, the Bubnov-Galerkin approximate method is applied to transform the complicated interaction governing equations into a system of second-order nonlinear differential equation with constant coefficients. Through judging the frequency characteristic of the system characteristic equation, the critical velocity of divergence instability is determined. Different parameter analysis shows that the orthotropy, geometrical nonlinearity and scantling of structure is significant for preventing destructive aerodynamic instability in membrane structures. Compared to the model without considering flow separation, it's basically consistent about the divergence instability regularities in the flow separation model.

Rotordynamic Effects Due to Aerodynamic Instability in a Turbo-compressor with Air Foil Bearings (공기 포일 베어링으로 지지되는 터보 압축기의 공력 불안정성이 로터에 미치는 진동 영향)

  • Kim, Tae-Ho;Lee, Yong-Bok;Kim, Chang-Ho;Lee, Nam-Soo;Kim, Kwang-Ho;Shin, You-Hwan
    • The KSFM Journal of Fluid Machinery
    • /
    • 제6권2호
    • /
    • pp.62-69
    • /
    • 2003
  • An oil-free turbo-compressor supported by compliant foil bearings which remove oil-contamination by elimination of a conventional ball bearing and oil lubrication systems is presented. Turbo-compressor makes two individual air compressions with two impellers at a operating speed of 39,000 rpm. In this study, the rotordynamic effects caused by aerodynamic instability were investigated with variable mass flow rates. Correlations between frequencies of pressure fluctuation in two diffusers and those of excitation forces on rotor were clearly observed in an aerodynamic unsteady region. Thus, these results show that it is beneficial to design high-speed rotating turbomachinery by considering coupling effect between aerodynamic instability and rotordynamic force.

Dynamic instability of functionally graded material plates subjected to aero-thermo-mechanical loads

  • Prakash, T.;Ganapathi, M.
    • Structural Engineering and Mechanics
    • /
    • 제20권4호
    • /
    • pp.435-450
    • /
    • 2005
  • Here, the dynamic instability characteristics of aero-thermo-mechanically stressed functionally graded plates are investigated using finite element procedure. Temperature field is assumed to be a uniform distribution over the plate surface and varied in thickness direction only. Material properties are assumed to be temperature dependent and graded in the thickness direction according to simple power law distribution. For the numerical illustrations, silicon nitride/stainless steel is considered as functionally graded material. The aerodynamic pressure is evaluated based on first-order high Mach number approximation to the linear potential flow theory. The boundaries of the instability region are obtained using the principle of Bolotin's method and are conveniently represented in the non-dimensional excitation frequency-load amplitude plane. The variation dynamic instability width is highlighted considering various parameters such as gradient index, temperature, aerodynamic and mechanical loads, thickness and aspect ratios, and boundary condition.

Wind-induced Aerodynamic Instability of Super-tall Buildings with Various Cross-sectional Shapes

  • Kim, Wonsul;Yoshida, Akihito;Tamura, Yukio
    • International Journal of High-Rise Buildings
    • /
    • 제8권4호
    • /
    • pp.303-311
    • /
    • 2019
  • The effectiveness of aerodynamic modification to reduce wind loadings has been widely reported. However, most of previous studies have been investigated dynamic forces and pressure distributions on tall buildings with various unconventional configurations. This study was investigated dynamic characteristics and aerodynamic instability of super-tall buildings with unconventional configurations through extensive aeroelastic model experiments. Seventeen types of supertall building models were considered such as basic and corner modification with corner cut, chamfered, oblique opening, tapered, inversely tapered, bulged, helical with twist angles of $90^{\circ}$, $180^{\circ}$, $270^{\circ}$, $360^{\circ}$ and composite with $360^{\circ}$ helical & corner cut, 4-tapered & $360^{\circ}$ helical & corner cut, setback & corner cut, setback & $45^{\circ}$ rotate. As a result, aerodynamic characteristics of helical models with single modification are superior to those of other models with single modification. However, effect of twist angle for helical model is negligible. Further, the 4-tapered & $360^{\circ}$helical & corner cut model is most effective in reducing the along- and across-wind fluctuating displacement responses in all of experimental models.

Nonlinear wind-induced instability of orthotropic plane membrane structures

  • Liu, Changjiang;Ji, Feng;Zheng, Zhoulian;Wu, Yuyou;Guo, Jianjun
    • Wind and Structures
    • /
    • 제25권5호
    • /
    • pp.415-432
    • /
    • 2017
  • The nonlinear aerodynamic instability of a tensioned plane orthotropic membrane structure is theoretically investigated in this paper. The interaction governing equation of wind-structure coupling is established by the Von $K\acute{a}rm\acute{a}n's$ large amplitude theory and the D'Alembert's principle. The aerodynamic force is determined by the potential flow theory of fluid mechanics and the thin airfoil theory of aerodynamics. Then the interaction governing equation is transformed into a second order nonlinear differential equation with constant coefficients by the Bubnov-Galerkin method. The critical wind velocity is obtained by judging the stability of the second order nonlinear differential equation. From the analysis of examples, we can conclude that it's of great significance to consider the orthotropy and geometrical nonlinearity to prevent the aerodynamic instability of plane membrane structures; we should comprehensively consider the effects of various factors on the design of plane membrane structures; and the formula of critical wind velocity obtained in this paper provides a more accurate theoretical solution for the aerodynamic stability of the plane membrane structures than the previous studies.

Numerical study of the effect of periodic jet excitation on cylinder aerodynamic instability

  • Hiejima, S.;Nomura, T.
    • Wind and Structures
    • /
    • 제5권2_3_4호
    • /
    • pp.141-150
    • /
    • 2002
  • Numerical simulations based on the ALE finite element method are carried out to examine the aerodynamics of an oscillating circular cylinder when the separated shear flows around the cylinder are stimulated by periodic jet excitation with a shear layer instability frequency. The excitation is applied to the flows from two points on the cylinder surface. The numerical results showed that the excitation with a shear layer instability frequency can reduce the negative damping and thereby stabilize the aerodynamics of the oscillating cylinder. The change of the lift phase seems important in stabilizing the cylinder aerodynamics. The change of lift phase is caused by the merger of the vortices induced by the periodic excitation with a shear layer instability frequency, and the vortex merging comes from the high growth rate, the rapid increase of wave number and decrease of phase velocity for the periodic excitation in the separated shear flows.

Nonlinear aerodynamic stability analysis of orthotropic membrane structures with large amplitude

  • Zheng, Zhoulian;Xu, Yunping;Liu, Changjiang;He, Xiaoting;Song, Weiju
    • Structural Engineering and Mechanics
    • /
    • 제37권4호
    • /
    • pp.401-413
    • /
    • 2011
  • The aerodynamic stability of orthotropic tensioned membrane structures with rectangular plane is theoretically studied under the uniform ideal potential flow. The aerodynamic force acting on the membrane surface is determined by the potential flow theory in fluid mechanics and the thin airfoil theory in aerodynamics. Then, based on the large amplitude theory and the D'Alembert's principle, the interaction governing equation of wind-structure is established. Under the circumstances of single mode response, the Bubnov-Galerkin approximate method is applied to transform the complicated interaction equation into a system of second order nonlinear differential equation with constant coefficients. Through judging the stability of the system characteristic equation, the critical divergence instability wind velocity is determined. Finally, from different parametric analysis, we can conclude that it has positive significance to consider the characteristics of orthotropic and large amplitude for preventing the instability destruction of structures.

Aeroelastic forces on yawed circular cylinders: quasi-steady modeling and aerodynamic instability

  • Carassale, Luigi;Freda, Andrea;Piccardo, Giuseppe
    • Wind and Structures
    • /
    • 제8권5호
    • /
    • pp.373-388
    • /
    • 2005
  • Quasi-steady approaches have been often adopted to model wind forces on moving cylinders in cross-flow and to study instability conditions of rigid cylinders supported by visco-elastic devices. Recently, much attention has been devoted to the experimental study of inclined and/or yawed circular cylinders detecting dynamical phenomena such as galloping-like instability, but, at the present state-of-the-art, no mathematical model is able to recognize or predict satisfactorily this behaviour. The present paper presents a generalization of the quasi-steady approach for the definition of the flow-induced forces on yawed and inclined circular cylinders. The proposed model is able to replicate experimental behaviour and to predict the galloping instability observed during a series of recent wind-tunnel tests.