• Title/Summary/Keyword: Aerodynamic Heating

Search Result 68, Processing Time 0.045 seconds

AERODYNAMIC HEATING TEMPERATURE OF SOUNDING ROCKET USING CFD (CFD를 이용한 로켓 공력가열 온도 예측)

  • Kim, S.L.;Kim, Y.H.;Ok, H.;Kim, I.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.89-92
    • /
    • 2006
  • Aerodynamic heating temperature shown in a NASA's sounding rocket test data was reproduced with CFD technique, comparing with those with analytical method CFD made heat transfer rates and recovery temperatures as the flight trajectory, which made it possible to calculate the wall temperature of rocket. The predicted wall temperature was compared with analytically predicted temperatures. Both the temperatures were compatible although their recovery temperature and heat transfer rates are a little different.

  • PDF

ASCENT THERMAL ANALYSIS OF FAIRING OF SPACE LAUNCH VEHICLE

  • Choi Sang-Ho;Kim Seong-Lyong;Kim Insun
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.239-242
    • /
    • 2004
  • The fairing of the launch vehicles has a role of protecting the spacecraft from outer thermal, acoustical, and mechanical loads during flight. Among them, the thermal load is analyzed in the present study. The ascent thermal analyses include aerodynamic heating rate on every point of the fairing, heat transfer through the fairing and spacecraft, and the final temperature during ascent flight phase. A design code based on theoretical/experimental database is applied to calculate the aerodynamic heating rate, and a thermal math program, SINDA/Fluint, is considered for conductive heat transfer of the fairing. The results show that the present design satisfies the allowing temperature of the structure. Another important thermal problem, pyro explosive fairing separation device, is calculated because the pyro system is very sensitive to the temperature. The results also satisfies the pyro thermal condition.

  • PDF

The Study of Aerodynamic Heating Characteristics for the Design of Nose Shapes of Space Launcher (발사체 선두부의 공력가열현상 특성연구)

  • Choi, Won;Kim, Kyu-Hong;Lee, Kyung-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.6
    • /
    • pp.14-20
    • /
    • 2002
  • The aerodynamic heating at a nose cone is predicted under the KSR-III flight conditions. An equilibrium reacting gas condition is applied. The parametric study is performed with Mach number of 4.9, 10.2 and 15 and for the following nose shapes of hemisphere, cut cylinder and parabola. AUSMPW+ and shock aligned grid technique are used to provide the best aerodynamic solutions. In addition, the composite material of a nose cone is discussed in the viewpoint of a thermal safety.

Aerodynamic Heating Analysis and Flight Test of KSR-III Rocket (KSR-III 공력가열 해석 및 비행시험)

  • Kim, Seong-Lyong;Lee, Jun-Ho;Kim, In-Sun;Cho, Kwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.54-63
    • /
    • 2004
  • The inner surface temperatures of the KSR-III Sounding Rocket launched at 29th November 2002 were measured in the flight test, and the aerodynamic heating rate and outer surface temperature were calculated. The used program is the MINIVER code, which calculate the boundary layer equation based on the theoretical analysis, and its calculation is simulated on the flight time histories. The analysis considered the inner surface heat transfer with one dimensional solid heat conduction. The results showed that the major interior heat transfer is the radiation heat transfer, and the maximum outer surface temperature due to aerodynamic heating reached to $223^{\circ}C$ at fin and the maximum heating rate is about $133kW/m^2$ at nose cap. The whole analysis proved that the surface temperature remained below the allowable temperature, and the KSR-III thermal design satisfies the thermal environmental conditions.

Efficient Prediction of Aerodynamic Heating of a High Speed Aircraft for IR Signature Analysis (적외선 신호 분석을 위한 고속 항공기의 공력가열에 관한 효율적 예측)

  • Lee, Ji-Hyun;Chae, Jun-Hyeok;Ha, Nam-Koo;Kim, Dong-Geon;Jang, Hyun-Sung;Myong, Rho-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.11
    • /
    • pp.768-778
    • /
    • 2019
  • The ability to calculate aerodynamic heating and surface temperature is essential to ensure proper design of aircraft components in high speed flight. In this study, various empirical formulas for efficiently calculating aerodynamic heating of aircraft were first analyzed. A simple computational code based on empirical formulas was developed and then compared with commercial codes; ANSYS FLUENT based on the Navier-Stokes-Fourier equation, and ThermoAnalytics MUSES based on an empirical formula. The code was found to agree well with the results of FLUENT in the wall and stagnation point temperatures. It also showed excellent agreement with MUSES, within 1% and 5% in temperature and heat flux, respectively.

The Study on Structural Strength Test Technique for Cylindrical Supersonic Vehicle Subjected to Severe Heating Environment (원통형 초음속 비행체 내열구조시험 기법 연구)

  • Lee, Kyung-Yong;Kim, Jong-Hwan;Lee, Kee-Bhum;Jung, Jae-Kwon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.6
    • /
    • pp.83-91
    • /
    • 2005
  • This paper describes the structural strength test technique and the results for cylindrical supersonic vehicle subjected to both aerodynamic load and thermal load. The special positioning system using spring links was designed to float, support and restrain the test airframe during the test and the down-time. The hydraulic system and the electric heating system were utilized to apply the aerodynamic load and the thermal load to the test airframe together. Particularly, several hundreds of infrared quartz lamps were used for the heating system, and the thermal test conditions were successfully simulated. The test results showed that this kind of high temperature test is adequate to verify the structure integrity and produce useful engineering data which is necessary for the possible structural modification under thermal environments.

Thermo-Mechanical Characteristics of a Plate Structure under Mechanical and Thermal Loading (외력과 열하중을 동시에 받는 판구조의 열-기계적 특성)

  • 김종환;이기범;황철규
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.11
    • /
    • pp.26-34
    • /
    • 2006
  • The thermo-mechanical analysis and test were performed for plate structure under mechanical and thermal loading conditions. Infrared heating system and hydraulic loading system were used to simulate mechanical and thermal environment for the plate structure which is similar to the fin of the airframe. Also, FEM analysis using plastic option was added to evaluate thermo-mechanical behavior. Thermo-mechanical tests were conducted at elevated temperature and rapid heating(10℃/sec) condition with external loading together. To investigate the effect of heating environment, the strength at room temperature was compared with that of elevated temperature and rapid heating condition. A methodology for test and analysis for supersonic vehicle subjected to aerodynamic loading and heating was generated through the study. These experimental and analysis results can be used for designing thermal resistance structures of the supersonic vehicle.

Effects of Nose Radius of Blunt Body on Aerodynamic Heating in Thermochemical Nonequilibrium Flow (무딘 물체의 노즈 반지름이 비평형 유동의 공력 가열에 미치는 영향)

  • Lee Chang Ho;Park Seung O
    • Journal of computational fluids engineering
    • /
    • v.8 no.4
    • /
    • pp.34-40
    • /
    • 2003
  • The effect of nose radius on aerodynamic heating is investigated by using the Navier-Stokes code extended to thermochemical nonequilibrium airflow, Spherical blunt bodies, whose nose radius varies from 0.O03048 m to 0.6096 m, flying at Mach 25 at an altitude of 53.34 km are considered. Comparison of heat flux at stagnation point with the solution of Viscous Shock Layer and Fay-Riddell are made. Results show that the flow for very small radius is in a nearly frozen state, and therefore the heat flux due to diffusion is smaller than that due to translational energy. As the radius becomes larger, the portion of heat flux by diffusion becomes greater than that of heat flux by translational temperature and approaches to a constant value.

A Development of One-dimensional Thermal Analysis Tool for Flight Vehicle with Cork Insulation (코르크 삭마를 고려한 비행체 1D 온도해석 도구 개발)

  • Jeong, Taebin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.464-470
    • /
    • 2018
  • A development of one-dimensional thermal analysis tool is performed to estimate the thickness of cork insulation for flight vehicle. In the calculation of cork temperature, the cork density model, heat of ablation and pyrolysis gas enthalpy model were applied. The calculation for the two-layer model of cork and metal was performed by the tool and compared with the experimental data. The results for the two aerodynamic heating conditions were 17 % and -12 % different from the experimental data, respectively. The effect of mechanical ablation not included in the calculation can be expected as the cause of the difference. The temperature-density curve of cork which adjusted by experimental data was also presented.

KSR- III 외피 단열에 대한 연구

  • Lee, Joon-Ho;Oh, Bum-Seok
    • Aerospace Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.128-134
    • /
    • 2002
  • Outer surfaces of KSR-III are insulated to protect outer structure and inner payloads from the aerodynamic heating. The characteristics of insulation material (BMS 10-102), selected through careful tests and thermal analyses, are low heat transfer rate and low density. It is applied in a wet and continuous spray pattern for outer surfaces of KSR-III. In the present study, the honeycomb sandwich structure of nose fairing, which is one of the typical multi-layer structures of KSR-III, is thermally analyzed with insulation.

  • PDF