• 제목/요약/키워드: Aerodynamic Analysis

검색결과 1,343건 처리시간 0.029초

주기적으로 회전진동하는 원주 후류의 유동구조에 관한 실험적 연구 (Experimental Study on Flow Structure of Wake Behind a Rotationally Oscillating Circular Cylinder)

  • 이정엽;이상준
    • 대한기계학회논문집B
    • /
    • 제30권4호
    • /
    • pp.298-305
    • /
    • 2006
  • The flow around a circular cylinder which oscillates rotationally with a relatively high forcing frequency has been investigated experimentally using flow visualization and hot-wire measurements. Dominant parameters are Reynolds number (Re), oscillation amplitude $({\theta}_A)$, and frequency ratio $F_R=f_f/f_n$, where $f_f$ is the forcing frequency and $f_n$ is the natural frequency of vortex shedding. Experiments were carried out under the conditions of $Re=4.14{\times}10^3,\;{\theta}_A={\pi}/6$, and $0{\leq}F_R{\leq}2$. The effect of frequency ratio $F_R$ on the flow structure of wake was evaluated by measuring wake velocity profile and spectral analysis of hot-wire signal. Depending on the frequency ratio $F_R$, the cylinder wake has 5 different flow regimes. The vortex formation length and vortex shedding frequency are changed significantly before and after the lock-on regime. The drag coefficient was reduced under the condition of $F_R<1.0$ and the maximum drag reduction is about 33% at $F_R=0.8$. However, the drag is increased as $F_R$ increases beyond $F_R=1.0$. This active flow control method can be effective in aerodynamic applications, if the forcing parameters are selected optimally.

Study on post-flutter state of streamlined steel box girder based on 2 DOF coupling flutter theory

  • Guo, Junfeng;Zheng, Shixiong;Zhu, Jinbo;Tang, Yu;Hong, Chengjing
    • Wind and Structures
    • /
    • 제25권4호
    • /
    • pp.343-360
    • /
    • 2017
  • The post-flutter state of streamlined steel box girder is studied in this paper. Firstly, the nonlinear aerodynamic self-excited forces of the bridge deck cross section were investigated by CFD dynamic mesh technique and then the nonlinear flutter derivatives were identified on this basis. Secondly, based on the 2-degree-of-freedom (DOF) coupling flutter theory, the torsional amplitude and the nonlinear flutter derivatives were introduced into the traditional direct flutter calculation method, and the original program was improved to the "post-flutter state analysis program" so that it can predict not only the critical flutter velocity but also the movement of the girder in the post-flutter state. Finally, wind tunnel tests were set to verify the method proposed in this paper. The results show that the effect of vertical amplitude on the nonlinear flutter derivatives is negligible, but the torsional amplitude is not; with the increase of wind speed, the post-flutter state of streamlined steel box girder includes four stages, namely, "little amplitude zone", "step amplitude zone", "linearly growing amplitude zone" and "divergence zone"; damping ratio has limited effect on the critical flutter velocity and the steady state response in the post-flutter state; after flutter occurs, the vibration form is a single frequency vibration coupled with torsional and vertical DOF.

남성성악가의 Vocal Register Transition(Passaggio)시 공기역학적 변화와 EGG의 변화 연구 (Analysis of Phonatory Aerodynamic & E.G.G. during Passaggio of the Trained Male Singers)

  • 남도현;최성희;최재남;최홍식
    • 대한후두음성언어의학회지
    • /
    • 제15권1호
    • /
    • pp.21-26
    • /
    • 2004
  • Vocal Register Transition(Passaggio) is one of the most important vocal technique for classically trined male singers(tenor). Passaggio is that it bridges the chest register to head register without a noticeable voice break. Vocalist gest the feeling that voice is not locked a particular register. The purpose of this study was to clarify the difference between easy($B_3$) tone and non passaggio(F#_4$) & passaggio(F#_4$). We selected 6 trained singers(tenor), who had more than 12.6 years of experience and were well trained in passaggio technique. Simulataneous measurement was performed frequency(F0), mean flow rate(MFR), intensity(I), and subglottal pressure(Psub) using a phonatory function analyzer(Nagashima) and Closed Quotient(CQ), Jitter, Shimmer, NHR a Electro-glottography(EGG) of Lx. Speech Studio(Laryngogrph Lt, London, UK) and vocal efficiency was calculated by Carroll's method. For the tenor, target tone/a/was measured in three conditions : 1) easy phonation : $B_3$, 2) high tone without passaggio : F#_4$, 3) high tone with passaggio : F#_4$). The results revealed that F0 of the target tones between non-passaggio group and passaggio group were not significantly different though higher is F0, higher is subglottal pressure. And also CQ, MFR, Psub were increased in passagio than nonpssagio but these values were not statistically different. This study concluded that passaggio is the vocal technique to make the same quality of tone between chest register and head register in tenor.

  • PDF

Assessment of statistical sampling methods and approximation models applied to aeroacoustic and vibroacoustic problems

  • Biedermann, Till M.;Reich, Marius;Kameier, Frank;Adam, Mario;Paschereit, C.O.
    • Advances in aircraft and spacecraft science
    • /
    • 제6권6호
    • /
    • pp.529-550
    • /
    • 2019
  • The effect of multiple process parameters on a set of continuous response variables is, especially in experimental designs, difficult and intricate to determine. Due to the complexity in aeroacoustic and vibroacoustic studies, the often-performed simple one-factor-at-a-time method turns out to be the least effective approach. In contrast, the statistical Design of Experiments is a technique used with the objective to maximize the obtained information while keeping the experimental effort at a minimum. The presented work aims at giving insights on Design of Experiments applied to aeroacoustic and vibroacoustic problems while comparing different experimental designs and approximation models. For this purpose, an experimental rig of a ducted low-pressure fan is developed that allows gathering data of both, aerodynamic and aeroacoustic nature while analysing three independent process parameters. The experimental designs used to sample the design space are a Central Composite design and a Box-Behnken design, both used to model a response surface regression, and Latin Hypercube sampling to model an Artificial Neural network. The results indicate that Latin Hypercube sampling extracts information that is more diverse and, in combination with an Artificial Neural network, outperforms the quadratic response surface regressions. It is shown that the Latin Hypercube sampling, initially developed for computer-aided experiments, can also be used as an experimental design. To further increase the benefit of the presented approach, spectral information of every experimental test point is extracted and Artificial Neural networks are chosen for modelling the spectral information since they show to be the most universal approximators.

조종면이 장착된 회전하는 발사체에서의 공력특성 분석에 관한 실험적 연구 (An Experimental Study of Aerodynamic Characteristics on a Projectile with Counter-Rotating Head Installed Fins)

  • 박영하;제상언;조수용
    • 한국항공우주학회지
    • /
    • 제41권5호
    • /
    • pp.357-365
    • /
    • 2013
  • 본 연구에서는 미사일형상의 몸체(쉘)와 쉘의 헤드부에 조종면을 부착한 발사체에서 힘과 모멘트를 측정하였다. 쉘과 헤드부는 상호 분리되어 있으며, 쉘은 모터에 의하여 회전되도록 하였다. 헤드부는 쉘의 회전방향과는 반대로 회전하며, 헤드부의 회전은 한 쌍의 조종면에 동일한 회전 방향으로 각변위을 주어서 비행하는 경우에 자연적으로 회전력이 발생되도록 하였다. 실험에서의 유속은 40 m/s로 설정하였으며, 레이놀드수는 헤드직경을 기준으로 $1.3{\times}10^5$였다. 발사체의 자세제어 및 방향전환을 위하여 헤드부에 있는 다른 한쌍의 조종면은 각변위의 조정이 가능하도록 하였다. 회전하는 발사체에서 힘과 모멘트의 변화가 측정되었으며, 측정된 결과로부터 FFT 분석을 통하여 영향력이 있는 진폭과 주파수를 얻었다.

지상 및 위성 고분해 적외스펙트럼 센서에서 관측된 황사 특성 (Infrared Spectral Signatures of Dust by Ground-based FT-IR and Space-borne AIRS)

  • 이병일;손은하;오미림;김윤재
    • 대기
    • /
    • 제19권4호
    • /
    • pp.319-329
    • /
    • 2009
  • The intensive dust observation experiment has been performed at Korea Global Atmosphere Watch Center (KGAW) in Anmyeon, Korea during each spring season from 2007 to 2009. Downward and upward hyper-spectral spectrums over the dust condition were measured to understand the hyper-spectral properties of Asian dust using both ground-based Fourier Transform Infrared Spectroscopy (FT-IR) and space-borne AIRS/Aqua. To understand the impact of the Asian dust, a Line-by-Line radiative transfer model runs to calculate the high resolution infrared spectrum over the wave number range of $500-500cm^{-1}$. Furthermore, the radiosonde, a $PM_{10}$ Sampler, a Micro Pulse Lidar (MPL), and an Aerodynamic Particle Sizer (APS) are used to understand the vertical profile of temperature and humidity and the properties of Asian dust like concentration, altitude of dust layer, and size distribution. In this study, we found the Asian dust distributed from surface up to 3-4 km and volume concentration is increased at the size range between 2 and $8{\mu}m$ The observed dust spectrums are larger than the calculated clear sky spectrums by 15~60K for downward and lower by around 2~6K for upward in the wave number range of $800-1200cm^{-1}$. For the characteristics of the spectrum during the Asian dust, the downward spectrum is revealed a positive slope for $800-1000cm^{-1}$ region and negative slope over $1100-1200cm^{-1}$ region. In the upward spectrum, slopes are opposed to the downward one. It is inferred that the difference between measured and calculated spectrum is mostly due to the contribution of emission and/or absorption of the dust particles by the aerosol amount, size distribution, altitude, and composition.

POD를 이용한 구조기본단면 주변 비정상흐름장 특성에 관한 연구 (Study on Unsteady Flow Field around Rectangular Cylinders using Proper Orthogonal Decomposition (POD))

  • 이재형;마츠모토 마사루
    • 한국강구조학회 논문집
    • /
    • 제20권6호
    • /
    • pp.751-759
    • /
    • 2008
  • 본 연구에서는 구조적 기본단면인 사각단면중에서 B/D=2,3,4,5 단면을 대상으로 단면주위 흐름상태가 단면의 공기력 특성에 미치는 영향을 살펴보고, 정지/진동하는 B/D=4 사각실린더 주위의 비정상압력장에 POD해석을 도입함으로써 흐름패턴에 따른 POD해석의 고유벡터를 규정하고 실린더 주위 흐름장 안에 공존하는 서로 다른 흐름패턴의 상호간섭과 물리적 모드분해에 관하여 검토하였다. POD해석의 고유벡터 비교를 통해서 칼만와류는 박리버블에 의해서 거의 영향받지 않지만 칼만와류는 단면후류부에서 박리버블의 발달에 상당히 간섭하고 있음을 확인하 였다. 변장비(B/D=2,34,5) 변화에 따른 ${dC_L/d\alpha}$, ${H_1^{*}}$의 정(+)부(-)의 차이, 즉 갤로핑현상에 대한 안정/불안정성은 박리전단층의 재부착에 깊은 관련이 있는 것으로 판단되며 B/D=3,4에서 시간평균적으로 재부착하던 주위흐름장이 칼만와류의 방출을 제어하면 재부착하지 않는 것으로 생각된다. 즉, 칼만와류의 억제는 후류부에서 박리전단층의 곡률이 작아지도록 간섭하고 단면에 있어서 elongation효과를 나타낸다.

KSR-III의 전기체 모달 시험 (Ground Vibration Test for Korea Sounding Rocket - III)

  • 우성현;김영기;이동우;문남진;김홍배
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.441-447
    • /
    • 2002
  • KSR-III(Korea Sounding Rocket - III), which is being developed by Space Technology R&D Division of KARI(Korea Aerospace Research Institute) will be launched in late 2002. It is a three-stage, liquid propellant rocket which can reach 250 km altitude and will carry out observation of ozone layer and scientific experiments, such as microgravity experiment, and atmospheric measurement. KSR-III is believed to be an intermediate to the launch vehicle capable of carrying a satellite to its orbit. Space Test Department of KARI performed GVT(Ground Vibration Test) fer KSR-III EM at Rocket Test Building of KARI. GVT is very important for predicting the behavior of rocket in its operation, developing flight control program and performing aerodynamic analysis. This paper gives an introduction of rocket GVT configuration and information on test procedures, techniques and results of It. In this test. to simulate free-free condition, test object hung in the air laterally by 4 bungee cords specially devised. For the excitation of test object, pure random signal by two electromagnetic shakers was used and total 22 frequency response functions were achieved. Polyreference parameter estimation was performed to identify the modal parameters with MIMO(Multi-Input-Multi-Output) method. As the result of the test, low frequency mode shapes and modal parameters below 60Hz were identified

  • PDF

풍력 발전 터빈 후류의 동적 분석 (Dynamic analysis of wind turbine wake)

  • 엄용한;김윤구;박성군
    • 한국가시화정보학회지
    • /
    • 제18권2호
    • /
    • pp.59-65
    • /
    • 2020
  • Vertical axis wind energy systems including 3 and 4 blades are numerically investigated in a two-dimensional (2D) computational domain. The power coefficient (Cp) is adopted to measure the efficiency of the system and the effect of the rotating velocity on the power coefficient is analyzed for the two different systems. The rotating velocity varies from 30 rad/s to 90 rad/s, which corresponds to the tip speed ratio (T.S.R) of 0.5 to 1.5. The torque exerted on the blades is mainly determined by the aerodynamic force in the x-direction and maximized when the blade is positioned at around θ = 186°. The efficiency of the 4-blade system is higher than that of the 3-blade system within the tip speed ratio range between 0.5 and 0.67, besides where the 3-blade system shows a better performance. For the 3-blade system, the maximum efficiency is reached to 0.082 at the tip speed ratio of 1.083. The maximum efficiency of the 4-blade system is 0.071 at T.S.R. = 0.92. The velocity fields in the x-direction, pressure fields, and the vorticity magnitude are analyzed in detail for the optimal cases of the 3- and 4-blades systems, respectively.

Investigation of crossflow features of a slender delta wing

  • Tasci, Mehmet O.;Karasu, Ilyas;Sahin, Besir;Akilli, Huseyin
    • Wind and Structures
    • /
    • 제31권3호
    • /
    • pp.229-240
    • /
    • 2020
  • In the present work, the main features of primary vortices and the vorticity concentrations downstream of vortex bursting in crossflow plane of a delta wing with a sweep angle of Λ=70° were investigated under the variation of the sideslip angles, β. For the pre-review of flow structures, dye visualization was conducted. In connection with a qualitative observation, a quantitative flow analysis was performed by employing Particle Image Velocimetry (PIV). The sideslip angles, β were varied with four different angles, such as 0°, 4°, 12°, and 20° while angles of attack, α were altered between 25° and 35°. This study mainly focused on the instantaneous flow features sequentially located at different crossflow planes such as x/C=0.6, 0.8 and 1.0. As a summary, time-averaged and instantaneous non-uniformity of turbulent flow structures are altered considerably resulting in non-homogeneous delta wing surface loading as a function of the sideslip angle. The vortex bursting location on the windward side of the delta wing advances towards the leading-edge point of the delta wing. The trajectory of the primary vortex on the leeward side slides towards sideways along the span of the delta wing. Besides, the uniformity of the lift coefficient, CL over the delta wing plane was severely affected due to unbalanced distribution of buffet loading over the same plane caused by the variation of the sideslip angle, β. Consequently, dissimilarities of the leading-edge vortices result in deterioration of the mean value of the lift coefficient, CL.