• Title/Summary/Keyword: Aerodynamic Analysis

Search Result 1,343, Processing Time 0.023 seconds

The Vibration Effect by Induced Pulsation Pressure to the Fatigue Crack of the Dampener Fitting Welding Zone (항공기용 유압 펌프의 맥동 압력에 의한 감쇄기 용접부위 균열 개선 연구)

  • Shin, Jae Hyuk;Kim, Tae Hwan;Kang, Gu Heon;Ha, Do Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.677-687
    • /
    • 2017
  • Aircraft can often be exposed to a variety of environments and vibrations such as engine, hydraulic pump, aerodynamic force. These may cause cracking and destruction of the mechanical structure and sub-components by high-cycle fatigue. The axial piston type pump which is usually applied to the aircraft hydraulic pump can be necessarily accompanied by the fluid pulsation by continuous rotation of the axial piston. The fatigue crack was identified at the dampener fitting welding zone to prevent vibration damping during the running of aircraft equipped with this type of pulsation hydraulic pump. In order to understand the root cause of this matter, fracture and component analyses were carried out and also integral type dampener fitting was applied to prevent recurrence of the crack as a subject of design improvements. Structural integrity stress analysis, fatigue analysis, qualification test and aircraft system equipped test was conducted to verify the design validity in application to integral type dampener fitting. The test results were sufficiently satisfactory with the demand lifetime of the material from the various types of test as conducted and the subject of design improvement in this study could be objectively evaluated that shall be applied to the operational aircraft.

Validating the Structural Behavior and Response of Burj Khalifa: Synopsis of the Full Scale Structural Health Monitoring Programs

  • Abdelrazaq, Ahmad
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.1
    • /
    • pp.37-51
    • /
    • 2012
  • New generation of tall and complex buildings systems are now introduced that are reflective of the latest development in materials, design, sustainability, construction, and IT technologies. While the complexity in design is being overcome by the availability and advances in structural analysis tools and readily advanced software, the design of these buildings are still reliant on minimum code requirements that yet to be validated in full scale. The involvement of the author in the design and construction planning of Burj Khalifa since its inception until its completion prompted the author to conceptually develop an extensive survey and real-time structural health monitoring program to validate all the fundamental assumptions mad for the design and construction planning of the tower. The Burj Khalifa Project is the tallest structure ever built by man; the tower is 828 meters tall and comprises of 162 floors above grade and 3 basement levels. Early integration of aerodynamic shaping and wind engineering played a major role in the architectural massing and design of this multi-use tower, where mitigating and taming the dynamic wind effects was one of the most important design criteria established at the onset of the project design. Understanding the structural and foundation system behaviors of the tower are the key fundamental drivers for the development and execution of a state-of-the-art survey and structural health monitoring (SHM) programs. Therefore, the focus of this paper is to discuss the execution of the survey and real-time structural health monitoring programs to confirm the structural behavioral response of the tower during construction stage and during its service life; the monitoring programs included 1) monitoring the tower's foundation system, 2) monitoring the foundation settlement, 3) measuring the strains of the tower vertical elements, 4) measuring the wall and column vertical shortening due to elastic, shrinkage and creep effects, 5) measuring the lateral displacement of the tower under its own gravity loads (including asymmetrical effects) resulting from immediate elastic and long term creep effects, 6) measuring the building lateral movements and dynamic characteristic in real time during construction, 7) measuring the building displacements, accelerations, dynamic characteristics, and structural behavior in real time under building permanent conditions, 8) and monitoring the Pinnacle dynamic behavior and fatigue characteristics. This extensive SHM program has resulted in extensive insight into the structural response of the tower, allowed control the construction process, allowed for the evaluation of the structural response in effective and immediate manner and it allowed for immediate correlation between the measured and the predicted behavior. The survey and SHM programs developed for Burj Khalifa will with no doubt pioneer the use of new survey techniques and the execution of new SHM program concepts as part of the fundamental design of building structures. Moreover, this survey and SHM programs will be benchmarked as a model for the development of future generation of SHM programs for all critical and essential facilities, however, but with much improved devices and technologies, which are now being considered by the author for another tall and complex building development, that is presently under construction.

Analysis of Quartz Content and Particle Size Distribution of Airborne Dust from Selected Foundry Operations (주물사업장 주공정별 발생하는 분진의 석영함유량 및 크기분포 연구)

  • Phee, Young Gyu;Roh, Young Man;Lee, Kwang Mook;Kim, Hyoung-Ah;Kim, Yong Woo;Won, Jeoung Il;Kim, Hyunwook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.7 no.2
    • /
    • pp.196-208
    • /
    • 1997
  • This study was performed to estimate quartz contents in the both bulk and airborne dust samples and to determine particle size distribution of airborne dust from the selected foundry operations. Total dust samples were collected by a 37mm cassette and respirable by a 10 mm nylon cyclone. Particle size distributions were determined by a Marple's 8-stage cascade impactor at the melting, molding, shakeout and finishing operations. The presence of elements in the dust samples were confirmed by the scanning electron microscopy equipped with the energy dispersive x-ray spectrometry. The quartz contents were estimated using the intensity of the absorption peak of quartz at 799 cm-l by the Fourie Transformed Infrared Spectroscopy (FTIR). The results were as follows: 1. The analysis of data from cascade Impactor showed bimodal distributions of particle size at the melting, molding and shakeout operations. Mass median aerodynamic diameters for the distributions determined by histogram were $0.48-1.65{\mu}m$ for small and $13.43-19.58{\mu}m$ for large modes. In the dust samples collected at the finishing operations, however, only a large mode of $18.89{\mu}m$ was found. 2. The percentages of total to respirable dust concentration calculated from the impactor data ranged from 42 % to 66 %. The average concentrations of respirable dust by cyclone were $0.85-1.28mg/m^3$ collected from the workers, and were $0.23-0.56mg/m^3$ from the areas surveyed. Dust concentrations of personal samples were statistically significantly higher than those of area samples. The highest dust concentration was obtained from the personal samples of the finishing operation. 3. The mean percentages of silicon and oxygen estimated by SEM-EDXA in the bulk samples ranged from 35.83 % to 36.02 % and from 39.93 %-41.64 %, respectively. 4. The average quartz contents estimated by FTIR in the respirable dust from personal samples ranged from 4.32 % to 5.36 % and 4.54 % to 4.70 % in the bulk samples. No statistical difference of quartz content was found between foundry operations. In this study, quartz content was quantified by FTIR. Although no statistically significant difference in quartz content between airborne and bulk, samples and between different foundry operations was found, it is recommended that quartz content in the individual sample of respirable dust be analyzed and the results be used either to select an applicable quartz limits or to calculate the exposure limit. Further studies, however, are needed to compare the results by FTIR and XRD since it is reported that the quartz content determined by FTIR is different from that by XRD.

  • PDF

The Correlation between The Size and Location of Vocal Polyp and Voice Quality, Before and After Laryngeal Microsurgery (후두미세수술 전후 성대 용종의 크기 및 위치가 음성의 질의 변화에 미치는 영향)

  • Han, Won Gue;Kim, Min-Su;Oh, Kyung Ho;Woo, Jeung Soo;Jung, Kwang Yoon;Kwon, Soon Young
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.27 no.2
    • /
    • pp.102-107
    • /
    • 2016
  • Background and Objectives : Vocal polyps are caused by inflammation induced by stress or irritation. Many patients with vocal polyps complain voice discomfort. For vocal polyps, surgery such as laryngeal microsurgery has been the mainstay of management. We analyzed the clinical features of vocal polyps, and how the size and location of vocal polyps affect the outcomes of surgery. Methods : We retrospectively reviewed 42 patients from March 2014 to December 2015, who were diagnosed as unilateral single vocal polyp. When we operated on a vocal polyp with laryngeal microscopy, we measured their size and location. The quality of voice was evaluated by GRABS scale, jitter, shimmer, NHR (noise to harmonic ratio), MPT (maximum phonation time), and VHI (voice handicap index) before operation and 4 weeks after operation. Results : When we divided the patients into large-sized vocal polyp group (the longest length >3 mm) and small-sized vocal polyp group (the longest length ${\leq}3mm$), all parameter differences tend to be greater at large sized vocal polyp. However, these differences were not statistically significant (p>0.05). When we divided into two groups depending on the volume of vocal polyp, no distinct tendency was found. When we compared the location (anterior, mid and posterior) of vocal polyp with the improvement of voice quality, more change was found at mid portion vocal polyp, except the difference of VHI. However, these differences were also not statistically significant (p>0.05). Conclusion : All parameter differences tend to be greater at large vocal polyp and polyp of the mid location.

  • PDF

Structural Design and Experimental Investigation of A Medium Scale Composite Wind Turbine Blade Considering Fatigue Life (피로 수명을 고려한 중형 복합재 풍력터빈 블레이드의 구조설계 및 실험 평가)

  • Gong, Chang Deok;Bang, Jo Hyeok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.23-30
    • /
    • 2003
  • In this study, the various load cases by specified by the IEC61400-1 international specification and GL Regulations for the wind energy conversion system were considered, and a specific composite structure configuration which can effectively endure various loads was proposed. In order to evaluate the structure, the structural analysis for the composite wind turbine blade was performed using the finite element method(FEM). In the structural design, the acceptable configuration of blade structure was determined through the parametric studies, and the most dominant design parameters were confirmed. In the stress analysis using the FEM, it was confirmed that the blade structure was safe and stable for all the considerd load cases. Moreover the safety of the blade root joint with insert bolts, newly devised in this study, was checked against the design loads and also the fatigue loads. The fatigue life for operating more than 20 years was estimated by using the well-known S-N linear damage rule, the load spectrum and Spera's empirical equations. The full-scale static test was performed under the simulated aerodynamic loads. from the experimental results, it was found that the designed blade had the structural integrity. Furthermore the measured results were agreed with the analytical results such as deflections, strains, the mass and the radial center of gravity. The studied blade was successfully certified by an international institute, GL, of Germany.

Measurement and Analysis for the Upper Side Flow Boundary Layer of a High Speed Train Using Wind Tunnel Experiments with a Scaled Model (축소모형 풍동시험을 이용한 고속열차의 유동 상부경계층 측정 및 분석)

  • Oh, Hyuck Keun;Kwon, Hyeok-bin;Kwak, Minho;Kim, Seogwon;Park, Choonsoo
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.1
    • /
    • pp.11-19
    • /
    • 2016
  • The flows around a high speed train are very important because they could affect the aerodynamic characteristics such as drag and acoustic noise. Especially the boundary layer of flows could represent the characteristic of flows around the high speed train. Most previous studies have focused on the boundary layer region along the train length direction for the side of the train and underbody. The measurement and analysis of the boundary layer for the roof side is also very important because it could determine the flow inlet condition for the pantograph. In this study, the roof boundary layer was measured with a 1/20 scaled model of the next generation high speed train, and the results were compared with full-scaled computational fluid dynamics results to confirm their validity. As a result, it was confirmed that the flow inlet condition for the pantograph is about 85% of the train speed. Additionally, the characteristics of the boundary layer, which increases along the train direction, was also analyzed.

The Phonetic Characteristics and Voice Handicap Index in Allergic Rhinitis Patients (알레르기성 비염 환자들의 음향음성학적 특성 및 음성장애지수)

  • Kim, Seong-Tae;Choi, Seung-Ho;Roh, Jong-Lyel;Lee, Bong-Jae;Shim, Mi-Ran;Kim, Sang-Yoon;Nam, Soon-Yuhl
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.18 no.1
    • /
    • pp.39-43
    • /
    • 2007
  • Background and Objectives: There are few studies reported that specifically examine the phonetic characteristics and voice handicap index (VHI) in patients with Allergic Rhinitis. This study was designed to examine phonetic characteristics and VHI in adult patients with allergic rhinitis. Materials and Methods: Forty-two male patients diagnosed as allergic rhinitis were given skin-prick test and others, aged from 20 to 56 years, and were compared with a 16 male control group with no pathology and in the same age group. The VHI was used to measure the changes of patient's perception. Acoustic and aerodynamic analysis test were done, and a nasalance test performed to measure rabbit, baby, and mother passage. Acoustic rhionometry (AR) was performed to evaluate nasal volume and nasal crosssectional area. Statistical analysis was done using independent sample t-test. Results: VHI showed significantly different score in the studied group, higher than that of control group. AR graph showed that there was no significant differences of nasal volume and nasal cross-sectional area. The Shimmer and SFF value in the group of allergic patients were higher than in the control group. MPT value in the group of allergic patients was lower than in the control group. Nasalance in allergic patients showed hypernasality all passage. Conclusion: We suggest that patients with allergic rhinitis have considerable voice problems. Most of them have hypernasality, which may be a compensatory mechanism by nasal obstruction.

  • PDF

Estimation of the major sources for organic aerosols at the Anmyeon Island GAW station (안면도에서의 초미세먼지 유기성분 주요 영향원 평가)

  • Han, Sanghee;Lee, Ji Yi;Lee, Jongsik;Heo, Jongbae;Jung, Chang Hoon;Kim, Eun-Sill;Kim, Yong Pyo
    • Particle and aerosol research
    • /
    • v.14 no.4
    • /
    • pp.135-144
    • /
    • 2018
  • Based on a two-year measurement data, major sources for the ambient carbonaceous aerosols at the Anmyeon Global Atmosphere Watch (GAW) station were identified by using the Positive Matrix Factorization (PMF) model. The particulate matter less than or equal to $2.5{\mu}m$ in aerodynamic diameter (PM2.5) aerosols were sampled between June 2015 to May 2017 and carbonaceous species including ~80 organic compounds were analyzed. When the number of factors was 5 or 6, the performance evaluation parameters showed the best results, With 6 factor case, the characteristics of transported factors were clearer. The 6 factors were identified with various analyses including chemical characteristics and air parcel movement analysis. The 6 factors with their relative contributions were (1) anthropogenic Secondary Organic Aerosols (SOA) (10.3%), (2) biogenic sources (24.8%), (3) local biomass burning (26.4%), (4) transported biomass burning (7.3%), (5) combustion related sources (12.0%), and (6) transported sources (19.2%). The air parcel movement analysis result and seasonal variation of the contribution of these factors also supported the identification of these factors. Thus, the Anmyeon Island GAW station has been affected by both regional and local sources for the carbonaceous aerosols.

Numerical Analysis Study on the Turbulent Flow Characteristics around the Rotor Sail for Vessels (선박용 로터세일 주위의 난류 유동특성에 관한 수치해석적 연구)

  • Kim, Jung-eun;Cho, Dae-Hwan;Lee, Chang-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.648-656
    • /
    • 2022
  • As environmental regulations such as the International Maritime Organization (IMO)'s strategy to reduce greenhouse gases(GHG) are strengthened, technology development such as eco-friendly ships and alternative fuels is expanding. As part of this, ship propulsion technology using energy reduction and wind propulsion technology is emerging, especially in shipping companies and shipbuilders. By securing wind propulsion technology and introducing empirical research into shipbuilding and shipping, a high value-added market using eco-friendly technology can be created. Moreover, by reducing the fuel consumption rate of operating ships, GHG can be reduced by 6-8%. Rotor Sail (RS) technology is to generate a hydrodynamic lift in the vertical direction of the cylinder when the circular cylinder rotates at a constant speed and passes through the fluid. This is called the Magnus effect, and this study attempted to propose a plan to increase propulsion efficiency through a numerical analysis study on turbulence flow characteristics around RS, a wind power assistance propulsion system installed on a ship. Therefore, CL and CD values according to SR and AR changes were derived as parameters that affect the aerodynamic force of the RS, and the flow characteristics around the rotor sail were compared according to EP application.

Study for Correlation between Objective and Subjective Voice Parameters in Patients with Dysphonia (발성장애 환자에서 주관적 음성검사와 객관적 음성검사의 연관성 연구)

  • Park, Jung Woo;Kim, Boram;Oh, Jae Hwan;Kang, Tae Kyu;Kim, Dong Young;Woo, Joo Hyun
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.30 no.2
    • /
    • pp.118-123
    • /
    • 2019
  • Background and Objectives Voice evaluation is classified into subjective tests such as auditory perception and self-measurement, and objective tests such as acoustic and aerodynamic analysis. When evaluating dysphonia, subjective and objective test results do not always match. The purpose of this study was to analyze the relationship between subjective and objective evaluation in patients with dysphonia and to identify meaningful parameters by disease. Materials and Method The total of 322 patients who visited voice clinic from May 2017 to May 2018 were included in this study. Laryngeal lesions were identified using stroboscopy. Pearson correlation test was performed to analyse correlation between subjective tests including GRBAS scale and voice handicap index, and objective tests including jitter, shimmer, noise to harmonic ratio (NHR), cepstral peak prominence (CPP), maximal phonation time (MPT), mean flow rate, and subglottic pressure. Results In vocal nodule and sulcus vocalis, among GRBAS system, grade and breathiness showed good correlation with CPP, and roughness showed good correlation with jitter or shimmer. In unilateral vocal cord paralysis (UVCP), grade and breathiness showed a very good correlation with CPP, and also good correlation with jitter, shimmer, NHR, and MPT. Also asthenia showed good correlation with CPP and MPT. Vocal polyp has a limited association with other diseases. Conclusion In patients with dysphonia, grade and breathiness showed good correlation with CPP, jitter, and shimmer, and reflect the state of voice change well especially in UVCP, CPP, and MPT.