• Title/Summary/Keyword: Aerodynamic Analysis

Search Result 1,354, Processing Time 0.024 seconds

Numerical Analysis of 2-Dimensional Viscous Compressible Flow around the High Speed Train (고속열차 주위의 점성 압축성 2차원 유동해석)

  • Ha, Seong-Do;Kim, Yu-Il
    • 연구논문집
    • /
    • s.25
    • /
    • pp.13-22
    • /
    • 1995
  • At the running speed higher than 250 km/h, several aerodynamic problems such as the increase of aerodynamic resistance, aerodynamic noise, pressure fluctuation at the tunnel entry, impulsive wave at the tunnel exit bring about the power consumption, deterioration of riding quality, and severe environmental noise. To solve these aerodynamic problems, the flow phenomena around the high speed train have to be analyzed in detail. In this study, the flow around the train is modelled as the 2-dimensional viscous compressible flow and the flow field is calculated numerically for the three different types of geometry and running speed. The aerodynamic drag coefficient and the pressure coefficient are evaluated each case.

  • PDF

The Aerodynamic Analysis between Normal Voice and Esophageal Voice (정상인과 식도발성 음성에서의 공기역학적 비교 연구)

  • 박국진;최홍식;정형진;유신영;박준호;김한수
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.9 no.1
    • /
    • pp.5-10
    • /
    • 1998
  • Voice rehabilitation is very important concerning in laryngectomees. Esophageal speech is a common and widely used method of voice restoration. But, until now there is no reliable data which shows the aerodynamic characteristics of esophageal speech. In order to evaluate the vocal quality of normal laryngeal and esophageal speech, several aerodynamic parameters were measured in 13 adults with normal laryngeal voice and 2 excellent esophageal speakers using Aerophone II voice function analyzer. The examined parameters were maximal flow rate, mean airflow rate, subglottic pressure, vocal efficiency, glottic resistance, maximal phonation time and mean sound pressure level. In vocal efficiency, there is no difference between two groups, but in other parameters, marked differences were showed in esophageal speakers, especially mean resistance. Results indicates that esophageal speakers make the efficient voices with poor aerodynamic condition, comparing with normal laryngeal speakers.

  • PDF

Computation of aerodynamic coefficients of a re-entry vehicle at Mach 6

  • R.C. Mehta;E. Rathakrishnan
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.5
    • /
    • pp.457-471
    • /
    • 2023
  • The paper evaluates the aerodynamic coefficients on a blunt-nose re-entry capsule with a conical cross-section followed by a cone-flare body. A computer code is developed to solve three-dimensional compressible inviscid equationsfor flow over a Space Recovery Experiment (SRE) configuration at different flare-cone half-angle at Mach 6 and angle of attack up to 5°, at 1° interval. The surface pressure variation is numerically integrated to obtain the aerodynamic forces and pitching moment. The numerical analysis reveals the influence of flare-cone geometry on the flow characteristics and aerodynamic coefficients. The numerical results agree with wind tunnel results. Increase of cone-flare angle from 25° to 35° results in increase of normal force slope, axial forebody drag, base drag and location of centre of pressure by 62.5%, 56.2% and 33.13%, respectively, from the basic configuration ofthe SRE of 25°.

Aerodynamic Analysis of the Blended Wing Body Type MAV using the Time-Domain Panel Method (시간영역 패널법을 이용한 융합익기 형상 초소형 무인기의 공력해석)

  • Park, Jin-Han;Cho, Lee-Sang;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.7
    • /
    • pp.637-646
    • /
    • 2010
  • A time-domain panel method based on the potential flow theory and the time-stepping method is developed to predict the steady/unsteady aerodynamic characteristics of FM07, which is the BWB (Blended-wing body) type MAV. In the aerodynamic analyses, we used two types of the initial model(Case I) and the improved model(Case II), which is moved the gravity center toward the rear and has larger aspect ratio. In the steady aerodynamic analyses, it is revealed that improved model has higher lift to drag ratio(L/D) and more stable pitch characteristic than those of the initial model. In the unsteady aerodynamic analyses for sudden acceleration motion similar to the launch phase of MAV, it seemed that there is a rapid increase of the lift coefficient after the launch and unsteady results are good agreed compare with steady results in just a few times. In the analysis for pitch oscillation motion, which is occurred at the cruise condition of the FM07, it shows that unsteady aerodynamic coefficients looped around steady results and the improved model has more sensitive aerodynamic characteristics.

Driving safety analysis of various types of vehicles on long-span bridges in crosswinds considering aerodynamic interference

  • Han, Yan;Huang, Jingwen;Cai, C.S.;Chen, Suren;He, Xuhui
    • Wind and Structures
    • /
    • v.29 no.4
    • /
    • pp.279-297
    • /
    • 2019
  • Strong winds threaten the safety of vehicles on long-span bridges considerably, which could force traffic authorities to reduce speed limits or even close these bridges to traffic. In order to maintain the safe and economic operation of a bridge, a reasonable evaluation of the driving safety on that bridge is needed. This paper aims at carrying outdriving safety analyses for three types of vehicles on a long-span bridge in crosswinds by considering the aerodynamic interference between the bridge and the vehicles based on the wind-vehicle-bridge coupling vibration analysis. Firstly, CFD numerical simulations along with previously obtained wind tunnel testing results were used to determine the aerodynamic force coefficients of the three types of vehicles on the bridge. Secondly, the dynamic responses of the bridge and the vehicles under crosswinds were simulated, and based on those, the driving safety analyses for the three types of vehicles on the bridge were carried out for both cases considering and not considering the aerodynamic interference between the vehicles and the bridge. Finally, the effect of the aerodynamic interference on the safety of the vehicles was investigated. The results show that the aerodynamic interference between the bridge and the vehicles not only affectsthe accident critical wind speed but also the accident type for all three types of vehicles. Such effects are also different for each of the three types of vehicles being studied.

Investigation on wind stability of three-tower cable-stayed-suspension hybrid bridges under skew wind

  • Xin-Jun Zhang;Li Bowen;Nan Zhou
    • Wind and Structures
    • /
    • v.38 no.6
    • /
    • pp.427-443
    • /
    • 2024
  • By using a computational program of three-dimensional aerostatic and aerodynamic stability analysis of long-span bridges under skew wind, the dynamic characteristics and structural stability(including the aerostatic and aerodynamic stability) of a three-tower cable-stayed-suspension hybrid bridge with main span of 1 400 meters are investigated numerically under skew wind, and the skew wind and aerostatic effects on the aerostatic and aerodynamic stability of three-tower cable-stayedsuspension hybrid bridge are ascertained. The results show that the three-tower cable-stayed-suspension hybrid bridge is a longspan structure with greater flexibility, and it is more susceptible to the wind action. The aerostatic instability of three-tower cable-stayed-suspension hybrid bridges is characterized by the coupling of vertical bending and torsion of the girder, and the skew wind does not affect the aerostatic instability mode. The skew wind has positive or negative effects on the aerostatic stability of the bridge, the influence is between -5.38% and 4.64%, and in most cases, it reduces the aerostatic stability of the bridge. With the increase of wind yaw angle, the critical wind speed of aerostatic instability does not vary as the cosine rule as proposed by the skew wind decomposition method, the skew wind decomposition method may overestimate the aerostatic stability, and the maximum overestimation is 16.7%. The flutter critical wind speed fluctuates with the increase of wind yaw angle, and it may reach to the minimum value under the skew wind. The skew wind has limited effect on the aerodynamic stability of three-tower cable-stayed-suspension hybrid bridge, however the aerostatic effect significantly reduces the aerodynamic stability of the bridge under skew wind, the reduction is between 3.66% and 21.86%, with an overall average drop of 11.59%. The combined effect of skew and static winds further reduces the critical flutter wind speed, the decrease is between 7.91% and 19.37%, with an overall average decrease of 11.85%. Therefore, the effects of skew and static winds must be comprehensively considered in the aerostatic and aerodynamic stability analysis of three-tower cable-stayed-suspension hybrid bridges.

Various Structural Approaches to Analyze an Aircraft with High Aspect Ratio Wings

  • El Arras, Anas;Chung, Chan Hoon;Na, Young-Ho;Shin, SangJoon;Jang, SeYong;Kim, SangYong;Cho, Changmin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.4
    • /
    • pp.446-457
    • /
    • 2012
  • Aeroelastic analysis of an aircraft with a high aspect ratio wing for medium altitude and long endurance capability was attempted in this paper. In order to achieve such an objective, various structural models were adopted. The traditional approach has been based on a one-dimensional Euler-Bernoulli beam model. The structural analysis results of the present beam model were compared with those by the three-dimensional NASTRAN finite element model. In it, a taper ratio of 0.5 was applied; it was comprised of 21 ribs and 3 spars, and included two control surfaces. The relevant unsteady aerodynamic forces were obtained by using ZAERO, which is based on the doublet lattice method that considers flow compressibility. To obtain the unsteady aerodynamic force, the structural mode shapes and natural frequencies were transferred to ZAERO. Two types of unsteady aerodynamic forces were considered. The first was the unsteady aerodynamic forces which were based on the one-dimensional beam shape; the other was based on the three-dimensional FEM model shape. These two types of aerodynamic forces were compared, and applied to the foregoing flutter analysis. The ultimate goal of the present research is to analyze the possible interaction between the rigid-body degrees of freedom and the aeroelastic modes. This will be achieved after the development of a reliable nonlinear beam formulation that would validate the current results as well as enable a thorough investigation of the nonlinearity. Moreover, such analysis will allow for an examination of the above-mentioned interaction between the flight dynamics and aeroelastic modes with the inclusion of the rigid body degrees of freedom.

Aerodynamic flutter analysis of a new suspension bridge with double main spans

  • Zhang, W.M.;Ge, Y.J.;Levitan, M.L.
    • Wind and Structures
    • /
    • v.14 no.3
    • /
    • pp.187-208
    • /
    • 2011
  • Based on the ANSYS, an approach of full-mode aerodynamic flutter analysis for long-span suspension bridges has been presented in this paper, in which the nonlinearities of structure, aerostatic and aerodynamic force due to the deformation under the static wind loading are fully considered. Aerostatic analysis is conducted to predict the equilibrium position of a bridge structure in the beginning, and then flutter analysis of such a deformed bridge structure is performed. A corresponding computer program is developed and used to predict the critical flutter wind velocity and the corresponding flutter frequency of a long-span suspension bridge with double main span. A time-domain analysis of the bridge is also carried out to verify the frequency-domain computational results and the effectiveness of the approach proposed in this paper. Then, the nonlinear effects on aerodynamic behaviors due to aerostatic action are discussed in detail. Finally, the results are compared with those of traditional suspension bridges with single main span. The results show that the aerostatic action has an important influence on the flutter stability of long-span suspension bridges. As for a suspension bridge with double main spans, the flutter mode is the first anti-symmetrical torsional vibration mode, which is also the first torsional vibration mode in natural mode list. Furthermore, a double main-span suspension bridge is better in structural dynamic and aerodynamic performances than a corresponding single main-span structure with the same bridging capacity.

Structural Design and Analysis of Connecting Part for Vertical Wind Turbine System Blade

  • Park, Hyunbum
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.2
    • /
    • pp.44-49
    • /
    • 2020
  • This work is intended to develop a flapping-type vertical wind turbine system that will be applicable to diesel generators and wind turbine generator hybrid systems. In the aerodynamic design of the wind turbine blade, parametric studies were performed to determine an optimum aerodynamic configuration. After the aerodynamic design, the structural design of the blade was performed. The major structural components of the flapping-type wind turbine are the flapping blade, the connecting part, and the stopper. The primary focus of this work is the design and analysis of the connecting part. Structural tests were performed to evaluate the blade design, and the test results were compared with the results of the analysis.

Aerodynamic performance evaluation of different cable-stayed bridges with composite decks

  • Zhou, Rui;Ge, Yaojun;Yang, Yongxin;Du, Yanliang;Zhang, Lihai
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.699-713
    • /
    • 2020
  • The aerodynamic performance of long-span cable-stayed bridges is much dependent on its geometrical configuration and countermeasure strategies. In present study, the aerodynamic performance of three composite cable-stayed bridges with different tower configurations and passive aerodynamic countermeasure strategies is systematically investigated by conducting a series of wind tunnel tests in conjunction with theoretical analysis. The structural characteristics of three composite bridges were firstly introduced, and then their stationary aerodynamic performance and wind-vibration performance (i.e., flutter performance, VIV performance and buffeting responses) were analyzed, respectively. The results show that the bridge with three symmetric towers (i.e., Bridge I) has the lowest natural frequencies among the three bridges, while the bridge with two symmetric towers (i.e., Bridge II) has the highest natural frequencies. Furthermore, the Bridge II has better stationary aerodynamic performance compared to two other bridges due to its relatively large drag force and lift moment coefficients, and the improvement in stationary aerodynamic performance resulting from the application of different countermeasures is limited. In contrast, it demonstrates that the application of both downward vertical central stabilizers (UDVCS) and horizontal guide plates (HGP) could potentially significantly improve the flutter and vortex-induced vibration (VIV) performance of the bridge with two asymmetric towers (i.e., Bridge III), while the combination of vertical interquartile stabilizers (VIS) and airflow-depressing boards (ADB) has the capacity of improving the VIV performance of Bridge II.