• Title/Summary/Keyword: Aerodynamic

Search Result 3,130, Processing Time 0.032 seconds

An Experimental Study on Wind Aerodynamic Improvement of Steel Composite Cable Stayed Bridge having π-shaped Girder (π형 주형을 가진 강합성 사장교의 공기역학적 제진방법에 대한 실험적 연구)

  • Chang, Dong Il;Min, In Ki
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.801-811
    • /
    • 1998
  • In this paper, aerodynamic properties and improvements of the ${\pi}-shaped$ stiffening girder is studied by wind tunnel tests in steel composite cable stayed bridge. As an improvement device, fairing, extension, post and flap is tested. and the best improved section is selected and estimated on angles of attack, damping ratios and turbulent flows. It is shown that the selected fairing is effective to improve the aerodynamic stability. And this study can be utilized as a database of wind-resistant methodology of steel composite cable stayed bridge.

  • PDF

Study on Properties of Pitch Control for Wind Turbine (풍력터빈의 피치 PI 제어기 특성 고찰)

  • Lim, Chae-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.1
    • /
    • pp.59-65
    • /
    • 2011
  • The aerodynamic power and torque of wind turbines are extremely nonlinear. Therefore, the overall dynamic behavior of a wind turbine exhibits nonlinear characteristics that are dependent on the magnitude of the wind speed. The nonlinear aerodynamic characteristics of the wind turbine also affect the characteristics of the control system of the wind turbine. Therefore, the analysis of the nonlinear aerodynamic characteristics of wind turbine is essential in designing the wind-turbine controller. In this study, the nonlinear aerodynamic characteristics and the effects of these characteristics on the closed-loop pitch system with PI controller for an 1-mass model of the wind turbine are investigated above rated power.

Measurement of Aerodynamic Loads on Railway Vehicles Under Crosswind (측풍 시 철도차량에 가해지는 공기역학적 하중의 측정)

  • Kwon, Hyeok-Bin;You, Won-Hee;Cho, Tae-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.1
    • /
    • pp.91-98
    • /
    • 2011
  • In this study, we measure the aerodynamic forces acting on an AREX train in a crosswind by wind tunnel testing. A detailed test model scaled to 5% of the original and including the inter-car, under-body, and the bogie systems was developed. The aerodynamic forces on the train vehicles have been measured in a 4 m $\times$ 3 m test section of the subsonic wind tunnel located in Korea Aerospace Research Institute (KARI). The aerodynamic forces and moments of the train model on two different track models have been plotted for various yaw angles, and the characteristics of the aerodynamic coefficients have been analyzed at the experimental conditions.

A Study of Aerodynamic Analysis for the Wind Turbine Rotor Blade using a general CFD code (풍력 발전기용 블레이드 공력해석에 대한 연구)

  • Park, Sang-Gyoo;Kim, Jin-Bum;Yeo, Chang-Ho;Kim, Tae-Woo;Kweon, Ki-Yeoung;Oh, Si-Deok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.516-520
    • /
    • 2009
  • This study describes aerodynamic characteristics for the HAWT (Horizontal Axis Wind Turbine) rotor blade using general CFD(Computational Fluid Dynamics) code. The boundary conditions for analysis are validated with the experimental result by the NREL (National Renewable Energy Laboratory)/NASA Ames wind tunnel test for S809 airfoil. In the case of wind turbine rotor blade, complex phenomena are appeared such as flow separation and re-attachment. Those are handled by using a commercial flow analysis tool. The 2-equation k-$\omega$ SST turbulence model and transition model appear to be well suited for the prediction. The 3-dimensional phenomena in the HAWT rotor blade is simulated by a commercial 3-D aerodynamic analysis tool. Tip vortex geometry and Radial direction flows along the blade are checked by the analysis.

  • PDF

Aerodynamic Performance Dependency on the Geometric Shape and Mounting Location of OSRVM (OSRVM의 형상 및 장착 위치가 차량의 공력성능에 미치는 영향)

  • Han, Hyun Wook;Park, Hyun Ho;Kim, Moon Sang;Ha, Jong Paek;Kim, Yong Nyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.30-42
    • /
    • 2013
  • This study investigates the effects of OSRVM mounting location and its configurations such as stalk height and housing height on the aerodynamic performance of the passenger car. In order to validate the flow solver, FLUENT which is very well known commercial code, the flow field around an Ahmed Body was analyzed numerically and compared with the experimental data. The predicted aerodynamic performance and flow patterns around a car show good agreements with the experimental data. Mounting location and stalk height should be designed while OSRVM is mounted on the car to evaluate the aerodynamic performance precisely. Housing height, however, may be designed independent of the car because the aerodynamic interference between housing height and car configuration is negligible.

Aerodynamic stability analysis of geometrically nonlinear orthotropic membrane structure with hyperbolic paraboloid in sag direction

  • Xu, Yun-ping;Zheng, Zhou-lian;Liu, Chang-jiang;Wu, Kui;Song, Wei-ju
    • Wind and Structures
    • /
    • v.26 no.6
    • /
    • pp.355-367
    • /
    • 2018
  • This paper studies the aerodynamic stability of a tensioned, geometrically nonlinear orthotropic membrane structure with hyperbolic paraboloid in sag direction. Considering flow separation, the wind field around membrane structure is simulated as the superposition of a uniform flow and a continuous vortex layer. By the potential flow theory in fluid mechanics and the thin airfoil theory in aerodynamics, aerodynamic pressure acting on membrane surface can be determined. And based on the large amplitude theory of membrane and D'Alembert's principle, interaction governing equations of wind-structure are established. Then, under the circumstance of single-mode response, the Bubnov-Galerkin approximate method is applied to transform the complicated interaction governing equations into a system of second-order nonlinear differential equation with constant coefficients. Through judging the frequency characteristic of the system characteristic equation, the critical velocity of divergence instability is determined. Different parameter analysis shows that the orthotropy, geometrical nonlinearity and scantling of structure is significant for preventing destructive aerodynamic instability in membrane structures. Compared to the model without considering flow separation, it's basically consistent about the divergence instability regularities in the flow separation model.

Large eddy simulation of blockage effects in the assessment of wind effects on tall buildings

  • Gao, Yang;Gu, Ming;Quan, Yong;Feng, Chengdong
    • Wind and Structures
    • /
    • v.30 no.6
    • /
    • pp.597-616
    • /
    • 2020
  • The blockage effect on the aerodynamic characteristics of tall buildings is a fundamental issue in wind tunnel test but has rarely been addressed. To evaluate the blockage effects on the aerodynamic forces on a square tall building and flow field peripherally, large eddy simulations (LES) were performed on a 3D square cylinder with an aspect ratio of 6:1 under the uniform smooth inflow and turbulent atmospheric boundary layer (ABL) inflow generated by the narrowband synthesis random flow generator (NSRFG). First, a basic case at a blockage ratio (BR) of 0.8% was conducted to validate the adopted numerical methodology. Subsequently, simulations were systematically performed at 6 different BRs. The simulation results were compared in detail to illustrate the differences induced by the blockage, and the mechanism of the blockage effects under turbulent inflow was emphatically analysed. The results reveal that the pressure coefficients, the aerodynamic forces, and the Strouhal number increase monotonically with BRs. Additionally, the increase of BR leads to more coherence of the turbulent structures and the higher intensity of the vortices in the vicinity of the building. Moreover, the blockage effects on the aerodynamic forces and flow field are more significant under smooth inflow than those under turbulent inflow.

Effect of windshields on the aerodynamic performance of a four-box bridge deck

  • Chen, Xi;Dragomirescu, Elena
    • Wind and Structures
    • /
    • v.31 no.1
    • /
    • pp.31-41
    • /
    • 2020
  • A new type of bridge deck section consisting of four-box decks, two side decks for vehicular traffic lanes and two middle decks for railway traffic, has been experimentally investigated for determining its aerodynamic properties. The eight flutter derivatives were determined by the Iterative Least Squares (ILS) method for this new type of four-box deck model, with two windshields of 30 mm and 50 mm height respectively. Wind tunnel experiments were performed for angles of attack α = ±6°, ±4°, ±2° and 0° and Re numbers of 4.85×105 to 6.06×105 and it was found that the four-box deck with the 50 mm windshields had a better aerodynamic performance. Also, the results showed that the installation of the windshields reduced the values of the lift coefficient CL for the negative angles attack in the range of -6° to 0°, but the drag coefficient CD increased in the positive angle of attack range. However, galloping instability was not encountered for the tested reduced wind speeds, of up to 9.8. The aerodynamic force coefficients and the flutter derivatives for the four-box deck model were consistent with the results reported for the Messina triple-box bridge deck, but were different from those reported for the twin-box bridge decks.

A review of the state-of-the-art in aerodynamic performance of horizontal axis wind turbine

  • Luhur, Muhammad Ramzan;Manganhar, Abdul Latif;Solangi, K.H.;Jakhrani, Abdul Qayoom;Mukwana, Kishan Chand;Samo, Saleem Raza
    • Wind and Structures
    • /
    • v.22 no.1
    • /
    • pp.1-16
    • /
    • 2016
  • The paper presents the state-of-the-art in aerodynamic performance of the modern horizontal axis wind turbine. The study examines the different complexities involved with wind turbine blade aerodynamic performance in open atmosphere and turbine wakes, and highlights the issues which require further investigations. Additionally, the latest concept of smart blades and frequently used wind turbine design analysis tools have also been discussed. The investigation made through this literature survey shows significant progress towards wind turbine aerodynamic performance improvements in general. However, still there are several parameters whose behavior and specific role in regulating the performance of the blades is yet to be elucidated clearly; in particular, the wind turbulence, rotational effects, coupled effect of turbulence and rotation, extreme wind events, formation and life time of the wakes.

Effects of Inlet Vent Shape on Aerodynamic Performance of a Low-Voltage Electric Motor Cooling Fan (유입부 형상이 저전압 전동기 냉각홴의 공력성능에 미치는 영향)

  • Park, Jae-Min;Heo, Man-Woong;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.5
    • /
    • pp.42-49
    • /
    • 2016
  • Aerodynamic analysis of a low-voltage electric motor has been performed with various inlet vent shapes. Effects of inlet vent shape on aerodynamic performance of a motor cooling fan have been investigated numerically using three-dimensional Reynolds-averaged Navier-Stokes equations. The k-${\varepsilon}$ turbulence model was used for the analysis of turbulence. The finite volume method and unstructured tetrahedral grids were used in the numerical analysis. Optimal grid system in the computational domain was selected through a grid-dependency test. From the results of the flow analysis, considerable energy loss by flow separation was observed in the flow passage. It was found that mass flow rate through the cooling fan in the low-voltage motor can be increased by modifying the inlet vent shape. And, some inlet vent shapes were suggested to improve the aerodynamic performance of the motor cooling fan.