• 제목/요약/키워드: Aerodynamic

Search Result 3,130, Processing Time 0.031 seconds

A Comparison of Aerodynamic Characteristics in Muscle Tension Dysphonia and Adductor Spasmodic Dysphonia (근긴장성 발성장애와 내전형 연축성 발성장애의 공기역학적 특성 비교)

  • Heo, Jeonghwa;Song, Kibum;Choi, Yanggyu
    • Phonetics and Speech Sciences
    • /
    • v.5 no.4
    • /
    • pp.63-70
    • /
    • 2013
  • The purpose of this study is to show the aerodynamic characteristics and differences in muscle tension dysphonia and adductor spasmodic dysphonia to predict factors which will provide additional information while preparing for the objective examination standard to distinguish the two dysphonias. Forty-eight individuals diagnosed with muscle tension dysphonia and adductor spasmodic dysphonia participated in this study. PAS was used in order to find the aerodynamic characteristics for the two dysphonias. The outcomes of this study show that the airflow variation and glottal resistance of the two groups showed noticeable differences. This study concludes that the aerodynamic characteristics may be used as additional information on diverse evaluations to classify muscle tension dysphonia and adductor spasmodic dysphonia.

FLOW SIMULATION AROUND DUCTED-PROP (덕티드-프롭 유동해석)

  • Choi, S.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.264-271
    • /
    • 2007
  • The flow simulations around ducted-prop of tilt-duct aircraft were conducted in this study. For the investigation of aerodynamic characteristics of various configurations of duct, the axisymmetric flow calculation method combined with actuator disk model for prop were used. The rapid two-dimensional calculation and fast grid generation enable aerodynamic analysis for various duct configurations in a very short time and anticipated to active role in optimal configuration design of duct exposed to various flight modes. For the case of angle of attack or tilt angle, the three dimensional flow calculation is conducted using the three dimensional grid simply generated by just revolving the axisymmetric grid around center axis. Through the three dimensional calculation around duct, the aerodynamic effectiveness of duct as a lifting surface in airplane mode was investigated. The flow calculations around the control vane (wing) installed in the rear section of duct were conducted The aerodynamic data of wing were compared with the data of the ducts to evaluate the aerodynamic effectiveness of ducts.

  • PDF

A STUDY OF AERODYNAMIC MODELING FOR UNFOLDING WING MOTION ANALYSIS (전개하는 날개의 공력 모델링 연구)

  • Jung, S.Y.;Yoon, S.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.245-250
    • /
    • 2008
  • For simulation of a wing unfolding motion for the various aerodynamic conditions, equation governing unfolding motion and moments applying to the unfolding wing were modelled. Aerodynamic roll moment consists of the static roll moment and the damping moment, which were obtained through wind tunnel tests and numerical analyses respectively. Panel method was used to compute the roll damping coefficient with twisted wing, whose deflection angle was equivalent to angle of attack due to the deployment motion. Roll damping coefficient is a function of angle of attack, sideslip angle, and deployment angle but not of angular velocity of deployment. Simulation with aerodynamic damping model gave more similar deployment time compared to wing deployment test results.

  • PDF

Aerodynamic Analysis of Counter-Rotating Propfans Around a Missile-Like-Body Using a Frequency Domain Panel Method (주파수영역 패널기법을 사용한 유도무기형태 동체에 장착된 엇회전식 프롭팬의 공력해석)

  • 조진수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1590-1597
    • /
    • 1994
  • The aerodynamic analysis of a $6{\times}6$ counter-rotating propfan around a missile-like-body has been completed analytically using a frequency domain panel method. The present method requires Fourier transformation of flow field around the propfan in computing the velocities normal to the propfan lifting surfaces. The aerodynamic performance curve is determined by angle of attack and nonuniform inflow conditions. The inflow conditions result from the variations of missile flight speed, angle of attack, propfan location relative to control surfaces and control surface deflection angle. The two cases of propfan location relative to control surface, front and behind, are analyzed and the aerodynamic results are presented.

AERODYNAMIC ANALYSIS ON LEADING-EDGE SWEEPBACK ANGLES OF FLYING-WING CONFIGURATIONS (전익기 형상의 앞전후퇴각 변화에 따른 공력해석)

  • Lee, J.M.;Chang, J.W.
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.48-55
    • /
    • 2006
  • A computational study was carried out in order to investigate aerodynamic characteristics on leading edge sweepback angles of Flying-Wing configurations. The viscous-compressible Navire-Stokes equation and Spalart-Allmaras turbulence model of the commercial CFD code were adopted for this computation analysis. This investigation examined aerodynamic characteristics of three different types of leading edge sweepback angles: $30^{\circ}C,\;35^{\circ}C\;and\;40^{\circ}C$. The freestream Mach number was M=0.80 and the angle of attack ranged from ${\alpha}=0^{\circ}C\;to\;{\alpha}=20^{\circ}C$. The results show that the increases in sweepback angle of the Flying-Wing configuration creates more efficient aerodynamic performance.

A STUDY OF AERODYNAMIC MODELING FOR UNFOLDING WING MOTION ANALYSIS (전개하는 날개의 공력 모델링 연구)

  • Jung, S.Y.;Yoon, S.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.245-250
    • /
    • 2008
  • For simulation of a wing unfolding motion for the various aerodynamic conditions, equation governing unfolding motion and moments applying to the unfolding wing were modelled. Aerodynamic roll moment consists of the static roll moment and the damping moment, which were obtained through wind tunnel tests and numerical analyses respectively. Panel method was used to compute the roll damping coefficient with twisted wing, whose deflection angle was equivalent to angle of attack due to the deployment motion. Roll damping coefficient is a function of angle of attack, sideslip angle, and deployment angle but not of angular velocity of deployment. Simulation with aerodynamic damping model gave more similar deployment time compared to wing deployment test results.

  • PDF

A Study about aerodynamic characteristics of High speed train by fore-body shape design (고속전철의 형상에 따른 공력특성 연구)

  • 진원재;이봉래
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.735-738
    • /
    • 1997
  • The aerodynamic charateristics of high speed train can be improved by fore-body design. In this paper, the design a fore-body shape which has optimal aerodynamic charateristics, 6 models of fore-body shape are proposed and the change of aerodynamic characteristics is studied through calculations of flow field around high speed train fro each fore-body shape. The flow field around high speed trains are calculated using Navier-Stokes equation. The variational trends of aerodynamic characteristics are studied from the result of flow calculation around high speed trains for 6 fore-body shapes.

  • PDF

Measurement of aerodynamic noise of maglev vehicle models using sound camera (음향카메라를 이용한 자기부상열차 모형의 공력소음 측정)

  • Kim, Sang-Ryul;Kim, Hyun-Sil;Kim, Jae-Seung;Kang, Hyun-Ju;Kim, Bong-Ki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.637-640
    • /
    • 2008
  • Noise generated from maglev vehicles mainly consists of two components, one is due to mechanical noise and the other due to aerodynamic noise. The former is due to the vehicle-guideway interactions and the latter results from the unsteady air flow around the vehicle. Aerodynamic noise could become more predominant around 225 km/h for maglev vehicles. In this paper, the aerodynamic noise of maglev vehicles is investigated experimentally. The results of the wind tunnel experiments of maglev vehicle models are introduced and compared. The comparison shows that the position of the main noise is between the bottom of the vehicle model and the rail. It is also found that the emitted sound pressure level is related to the gap size between the vehicle bottom and the rail.

  • PDF

Investigation on the wind-induced instability of long-span suspension bridges with 3D cable system

  • Zhang, Xin-Jun
    • Wind and Structures
    • /
    • v.14 no.3
    • /
    • pp.209-220
    • /
    • 2011
  • The cable system is generally considered to be a structural solution to increase the spanning capacity of suspension bridges. In this work, based on the Runyang Bridge over the Yangtze River, three case suspension bridges with different 3D cable systems are designed, structural dynamic characteristics, the aerostatic and aerodynamic stability are investigated numerically by 3D nonlinear aerostatic and aerodynamic analysis, and the cable system favorable to improve the wind-induced instability of long-span suspension bridges is also proposed. The results show that as compared to the example bridge with parallel cable system, the suspension bridge with inward-inclined cable system has greater lateral bending and tensional frequencies, and also better aerodynamic stability; as for the suspension bridge with outward-inclined cable system, it has less lateral bending and tensional frequencies, and but better aerostatic stability; however the suspension bridge is more prone to aerodynamic instability, and therefore considering the whole wind-induced instability, the parallel and inward-inclined cable systems are both favorable for long-span suspension bridges.

Analysis of Aerodynamic Noise in High Speed Trains

  • Kim, Tae-Min;Kim, Jung-Soo
    • International Journal of Railway
    • /
    • v.4 no.3
    • /
    • pp.70-73
    • /
    • 2011
  • Controlling the exterior and interior noise emission has become an important issue in the research and development of high speed trains. As the operating speed of the train increases, the noise emission characteristics are expected to deviate from that of the existing trains due to several changes in the basic train layout. For train speed in excess of 350 km/h in particular, the aerodynamic noise component starts to exceed the structure-borne noise component, and even an incremental speed increase is accompanied by a rapid elevation in the noise level. The present study presents an engineering approach for predicting the aerodynamic noise level at the design stage for high speed trains. The experimental noise measurements from test run of Korean high speed train under development are presented as a partial validation of the proposed approach. While the overall aerodynamic noise can be cast in a single power law relationship against the train speed, different parts of the train show power law relationships unique to each component.