• Title/Summary/Keyword: Aerobic bioreactor

Search Result 54, Processing Time 0.026 seconds

The Effect of Air Injection Quantity on Stabilization of Screened Soil in Aerobic Bioreactor Landfill (호기성 Bioreactor 매립지에 있어서 공기주입량이 선별토사의 안정화에 미치는 영향)

  • Park, Jin-Kyu;Lee, Nam-Hoon;Kim, Nack-Joo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.12 no.1
    • /
    • pp.104-109
    • /
    • 2004
  • In this study, we stabilized the screened soil from landfills by using aerobic bioreactor and evaluated aerobic decomposition of it. Four lab-scale bioreactors (anaerobic and 1 PV/day aeration, 5 PV/day aeration, 10 PV/day aeration) filled with screened soil were operated to investigate the effect of air injection quantity on stabilization of screened soil. In case of aerobic bioreactors, the decomposition of organics in screened soil was higher than anaerobic bioreactor. According to the results of landfill gas and soil respiration test, the air injection quantity of 5 PV/day was most efficient in stabilization of screened soil.

  • PDF

Utilization of aerobic granulation to mitigate membrane fouling in MBRs

  • Iorhemen, Oliver T.;Hamza, Rania A.;Tay, Joo Hwa
    • Membrane and Water Treatment
    • /
    • v.8 no.5
    • /
    • pp.395-409
    • /
    • 2017
  • Membrane bioreactor (MBR) is a compact and efficient wastewater treatment and reclamation technology; but, it is limited by membrane fouling. The control of membrane fouling significantly increases operational and maintenance costs. Bacteria and their byproducts - extracellular polymeric substances (EPS) - are major contributors to membrane fouling in MBRs. A recent attempt at fouling mitigation is the development of aerobic granular sludge membrane bioreactor (AGMBR) through the integration of a novel biotechnology - aerobic granulation - and MBR. This paper provides an overview on the development of AGMBR to mitigate membrane fouling caused by bacteria and EPS. In AGMBR, EPS are used up in granule formation; and, the rigid structure of granules provides a surface for bacteria to attach to rather than the membrane surface. Preliminary research on AGMBR using synthetic wastewater show remarkable membrane fouling reduction compared to conventional MBR, thus improved membrane filtration. Enhanced performance in AGMBR using actual municipal wastewater at pilot-scale has also been reported. Therefore, further research is needed to determine AGMBR optimal operational conditions to enhance granule stability in long-term operations and in full-scale applications.

Effect of Coagulant addition on Nutrient Removal Efficiency in a Submerged Membrane Bioreactor (응집제의 첨가에 따른 Membrane bioreactor 의 고도처리 효율 연구)

  • Park, Jong-Bu
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.2
    • /
    • pp.235-241
    • /
    • 2011
  • This study was performed to investigate the characteristics of nutrient removal of municipal wastewater in the submerged membrane bioreactor by addition of alum directly into aerobic tank. Membrane bioreactor consists of three reactors such as two intermittent anaerobic tanks and the aerobic tank with hollow fiber membrane. The removal efficiencies of $COD_{cr}$, BOD, SS, TN and TP on the membrane bioreactor were 94.0%, 99.1%, 99.9%, 66.9%, and 58.9%, respectively. In addition, The removal efficiencies of $COD_{cr}$, BOD, SS, TN and TP on the membrane bioreactor with alum addition were 93.4%, 99.0%, 99.9%, 63.2%, and 96.8%, respectively. There was little difference between them on the nutrient removal efficiencies except phophorus removal. The estimated sludge production, specific denitrification rate, specific nitrification rate and phosphorus removal content on the membrane bioreactor were 1.76 kgTSS/d, $0.055mgNO_3-N/mgVSS{\cdot}d$, $0.031mgNH_4-N/mgVSS{\cdot}d$, and 0.095 kgP/d, respectively. And The estimated sludge production, specific denitrification rate, specific nitrification rate and phosphorus removal content on the membrane bioreactor with alum addition were 2.90 kgTSS/d, $0.049mgNO_3-N/mgVSS{\cdot}d$, $0.030mgNH_4-N/mgVSS{\cdot}d$, and 0.160 kgP/d, respectively. The alum content added was 1.7 molAl/molP on an average. The increasing ratio of tran-membrane pressure on the membrane bioreactor was $0.0056kgf/cm^2{\cdot}compared$ to $0.0033kgf/cm^2{\cdot}d$ on the membrane bioreactor with alum addition. There was a slightly reduction effect on membrane fouling by alum addition.

Effects of Organic Loading Rates on Treatment Performance in a Polyvinylidene Media Based Fixed-Film Bioreactor

  • Ahmed, Zubair;Oh, Sang-Eun;Kim, In S.
    • Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.238-242
    • /
    • 2009
  • This study investigated the effects of organic loading rates on simultaneous carbon and nitrogen removal in an innovative fixed-film aerobic bioreactor. The fixed-film bioreactor (FFB) was composed of a two-compartment aeration tank, in which a synthetic filamentous carrier was submerged as biofilm support media, and a settling tank which polyvinylidene media (Saran) was used as settling aid for suspended solids. Three different organic loading rates, ranging from 0.92-2.02 kg chemical oxygen demand/$m^3$/day were applied by varying hydraulic retention time (HRT). The total soluble organic carbon removal efficiencies were in the range of 90-97%. The removal efficiency of ammonia was found to be in the range of 70-84%. Total nitrogen removal efficiency was found to be in the range of 40-45%, which indicates that denitrification reactions occurred simultaneously in the attached biofilm on the fibrous media in the aeration tank. The settling performance of suspended solids was significantly improved due to the presence of Saran media in the settling compartment, even for a short HRT. The fixed-film aerobic bioreactor used in this study demonstrated efficient treatment efficiency even at higher organic loading rates and at short HRTs.

The BNR-MBR(Biological Nutrient Removal-Membrane Bioreactor) for nutrient removal from high-rise building in hot climate region

  • Ratanatamskul, C.;Glingeysorn, N.;Yamamoto, K.
    • Membrane and Water Treatment
    • /
    • v.3 no.2
    • /
    • pp.133-140
    • /
    • 2012
  • The overall performance of BNR-MBR, so-called Anoxic-Anaerobic-Aerobic Membrane Bioreactor ($A^3$-MBR), developed for nutrient removal was studied to determine the efficiencies and mechanisms under different solid retention time (SRT). The reactor was fed by synthetic high-rise building wastewater with a COD:N:P ratio of 100:10:2.5. The results showed that TKN, TN and phosphorus removal by the system was higher than 95%, 93% and 80%, respectively. Nitrogen removal in the system was related to the simultaneous nitrification-denitrification (SND) reaction which removed all nitrogen forms in aerobic condition. SND reaction in the system occurred because of the large floc size formation. Phosphorus removal in the system related to the high phosphorus content in bacterial cells and the little effects of nitrate nitrogen on phosphorus release in the anaerobic condition. Therefore, high quality of treated effluent could be achieved with the $A^3$-MBR system for various water reuse purposes.

가스상 TCE 처리를 위한 추출막 생물반응기의 수학적 모사

  • Kim, Ji-Seok;Kim, Gwan-Su;Jang, Deok-Jin
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.370-373
    • /
    • 2000
  • In this work, an extractive membrane bioreactor containing coulture broth of Burkholderia cepacia G4 PR1 constitutively expressing the TCE-degrading enzyme, tolune-ortho-monooxygenase(TOM), was used for the degradation of TCE. The membrane bioreactor operates by seperating the TCE-containing waste gas from the aerated biomedium, by which the air-stripping of TCE without degradation was overcome that could occur in conventional aerobic biological treatments of TCE-contaminated waste gases. This was achieved by a silicone rubber membrane which was coiled around a perspex draft tube. TCE from the gas phase diffuses across the silicone rubber membrane into microbial culture broth that was continuously fed from a separate aerobic CSTR. Therefore, TCE degradation occured without the TCE being directly exposed to the aerating gas stream. Of the TCE supplied to the membrane bioreactor, 72.6% was biodegraded during the operation of this system. To construct a mathematical model for this system, parameters describing microbial growth kinetics on TCE were determined using a CSTR bioreactor. Else parameters used for numerical simulation were determined from either indepedent experiments or values reported in the literature. The model was compared with the experimental data, and there was a good agreement between the predicted and the measured TCE concentrations in the system. To achieve a higher treatment efficiency, various operating conditions were simulated as well.

  • PDF

Mechanism Analysis of Effect of Oxygen on Molecular Weight of Hyaluronic Acid Produced by Streptococcus zooepidemicus

  • Duan, Xu-Jie;Niu, Hong-Xing;Tan, Wen-Song;Zhang, Xu
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.3
    • /
    • pp.299-306
    • /
    • 2009
  • Dissolved oxygen (DO) has a significant effect on the molecular weight of hyaluronic acid (HA) during the fermentation of Streptococcus zooepidemicus. Therefore, to further investigate the effect of DO on the yield and molecular weight of HA, this study compared the metabolic flux distribution of S. zooepidemicus under aerobic conditions at various DO levels. The metabolic flux analysis demonstrated that the HA synthesis pathway, considered a dependent network, was little affected by the DO level. In contrast, the fluxes of lactate and acetate were greatly influenced, and more ATP was generated concomitant with acetate at a high DO level. Furthermore, the has gene expression and HA synthase activity were both repressed under anaerobic conditions, yet not obviously affected under aerobic conditions at various DO levels. Therefore, it was concluded that the HA molecular weight would seem to depend on the concomitant effect of the generation of ATP and reactive oxygen species. It is expected that this work will contribute to a better understanding of the effect of the DO level on the mechanism of the elongation of HA chains.

Performances of a Sludge Reduction Process Using High Concentration Membrane Bioreactor with Sludge Pretreatment (슬러지 전처리와 고농도 MBR을 이용한 슬러지 감량화 공정연구)

  • Han, Kyu-Chul;Yeom, Ik-Tae;Jung, Woo-Jin;Kim, Hyung-Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.17 no.4
    • /
    • pp.559-566
    • /
    • 2003
  • From this research, the performances of a sludge reduction in the sewage sludge aerobic digestion was experimented by using a sludge pretreatment and membrane bioreactor. The submerged plate membrane was used as the solid-liquid separation membrane. After drawing small amounts of sludge in a bioreactor and then doing the alkaline treatment and ozone treatment, the sludge was sent to back to the reactor. The HRT in the reactor was set as 5 days and the operation in the reactor was carried out at the DO of 1mg/L on average. After 100 days of operation in the reactor, it was shown that the reduction efficiency of total solids was more than 83%. Most of volatile solids were removed through mineralization, and the considerable portion of the non-volatile solids was dissolved and then flowed out with the effluent. Only about 16.3% of total solids in the sludge was accmulated in the reactor even without the loss of volatile fraction. Also, by deriving nitrification and denitrification in one reactor simultaneously, more than 90% of nitrogen removal effect was realized and the experiment was run smoothly without fouling of membrane, even in the high concentration of MLSS. Based on this experiment, sludge can be reduced considerably at a low HRT by these two newly suggested approach.

Estimation of Dominant Bacterial Species in a Bench-Scale Shipboard Sewage Treatment Plant

  • Mansoor, Sana;Ji, Hyeon-Jo;Shin, Dae-Yeol;Jung, Byung-Gil;Choi, Young-Ik
    • Journal of Environmental Science International
    • /
    • v.28 no.10
    • /
    • pp.899-905
    • /
    • 2019
  • Recently, an innovative method for wastewater treatment and nutrient removal was developed by combining the sequence batch reactor and membrane bioreactor to overcome pollution caused by shipboard sewage. This system is a modified form of the activated sludge process and involves repeated cycles of mixing and aeration. In the present study, the bacterial diversity and dominant microbial community in this wastewater treatment system were studied using the MACROGEN next generation sequencing technique. A high diversity of bacteria was observed in anaerobic and aerobic bioreactors, with approximately 486 species. Microbial diversity and the presence of beneficial species are crucial for an effective biological shipboard wastewater treatment system. The Arcobacter genus was dominant in the anaerobic tank, which mainly contained Arcobacter lanthieri (8.24%), followed by Acinetobacter jahnsonii (5.81%). However, the dominant bacterial species in the aerobic bioreactor were Terrimonas lutea (7.24%) and Rubrivivax gelatinosus (4.95%).

AEROBIC DEGRADATION OF A NON-IONIC SURFACTANT IN A MEMBRANE BIOREACTOR(MBR)

  • Choi, In-Su;Wiesmann, Udo
    • Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.81-91
    • /
    • 2007
  • A membrane bioreactor (MBR) was used to investigate the aerobic degradation of foam active substance - non-ionic surfactant, APG 2000 UP. The surface aeration using the propeller loop reactor (PLR) guaranteed sufficient $O_2$ for substrate removal and bacteria growth and avoided foam development. Moreover, the cross-flow membrane filtration enabled the separation of the bacteria still loaded with surfactant in the collecting container. The biological degradation of the surfactant with varying hydraulic retention time (HRT) and influent concentration $c_{S0}$ showed high substrate removal of nearly 95% at high volumetric loading rates up to $7.4\;kgCOD\;m^{-3}d^{-1}$ and at sludge loading rates up to 1.8 kgCOD $(kgVSS\;d)^{-1}$ for biomass concentration $c_B\;{\approx}\;constant $. The increasing $c_B$ from 3.4 to $14.5\;gL^{-1}$ TSS respectively sludge retention time (SRT) from 5.1 to 442 d under complete biomass retention by the membrane filtration resulted in high removal of substrate ${\alpha}\;>\;90%$ with reducing excess sludge production.