• Title/Summary/Keyword: Aerobic Stabilization

Search Result 30, Processing Time 0.028 seconds

Possibility of aerobic stabilization technology for reducing greenhouse gas emissions from landfills in Korea (국내 폐기물매립지 온실가스 감축을 위한 호기성 안정화 공법의 적용 가능성)

  • Ban, Jong-Ki;Park, Jin-Kyu;Kim, Kyung;Yoon, Seok-Pyo;Lee, Nam-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.4
    • /
    • pp.40-51
    • /
    • 2015
  • This study is to estimate the viability of aerobic stabilization technology for reducing greenhouse gas (GHG) emissions from landfills in Korea. In this study, methane emissions were estimated by applying Landfill gas estimation model (LandGEM) to Y landfill in Korea. By comparison of an anaerobic condition (baseline) and an aerobic condition, the amount of $CO_2eq$ savings was calculated. The $CO_2eq$ savings take place inside the landfilled waste during aeration due to the conversion of previously anaerobic biodegradation to aerobic processes, releasing mainly $CO_2$. It was demonstrated that 86.6% of the total GHG emissions occurring under anaerobic conditions could be reduced by aerobic stabilization technology. This means the aerobic stabilization technology could reduce environmental contamination through early stabilization and GHG emissions considerably at the same time. Therefore, the aerobic stabilization technology is one of the optimal technologies that could be employed to domestic landfill sites to achieve sustainable landfill.

The Effect of Air Injection Quantity on Stabilization of Screened Soil in Aerobic Bioreactor Landfill (호기성 Bioreactor 매립지에 있어서 공기주입량이 선별토사의 안정화에 미치는 영향)

  • Park, Jin-Kyu;Lee, Nam-Hoon;Kim, Nack-Joo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.12 no.1
    • /
    • pp.104-109
    • /
    • 2004
  • In this study, we stabilized the screened soil from landfills by using aerobic bioreactor and evaluated aerobic decomposition of it. Four lab-scale bioreactors (anaerobic and 1 PV/day aeration, 5 PV/day aeration, 10 PV/day aeration) filled with screened soil were operated to investigate the effect of air injection quantity on stabilization of screened soil. In case of aerobic bioreactors, the decomposition of organics in screened soil was higher than anaerobic bioreactor. According to the results of landfill gas and soil respiration test, the air injection quantity of 5 PV/day was most efficient in stabilization of screened soil.

  • PDF

Field Study on Stabilization of Landfill Gas by Air Injection Mode (공기주입방식에 의한 매립지가스 안정화에 관한 현장연구)

  • Kim, Kyung;Park, Joonseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.4
    • /
    • pp.63-71
    • /
    • 2006
  • This study was conducted to evaluate air injection mode on stabilization of landfill gas and to predict the time for landfill mining. It took 8 times longer for pulse aeration to get to aerobic condition, compared to continuous aeration. It was evaluated that continuous aeration mode is more preferable than pulse mode for rapid air exchange in landfill mining. High correlation ($r^2$ = 0.95) was found between continuous aeration time and time to maintain aerobic condition when $0.2m^3/min$ of air was continuously injected and stopped. The aerobic condition ($CH_4$ < 5%) was maintained for 1.5 times longer than aeration time.

  • PDF

Comparison of Solid Waste Stabilization and Methane Emission from Anaerobic and Semi-Aerobic Landfills Operated in Tropical Condition

  • Sutthasil, Noppharit;Chiemchaisri, Chart;Chiemchaisri, Wilai;Wangyao, Komsilp;Towprayoon, Sirintornthep;Endo, Kazuto;Yamada, Masato
    • Environmental Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.261-268
    • /
    • 2014
  • Leachate quality and methane emission from pilot-scale lysimeters operated under semi-aerobic and anaerobic conditions were monitored for 650 days. Two semi-aerobic lysimeters were filled with un-compacted and compacted municipal solid wastes whereas two anaerobic lysimeters containing compacted wastes were operated with leachate storage at 50% and 100% of waste height, respectively. Despite having high moisture in wastes and operating under tropical rainfall events, leachate stabilization in semi-aerobic lysimeters took place much faster resulting in BOD reduction by 90% within 60 days, significantly shorter than 180-210 days observed in anaerobic lysimeters. Nitrogen concentration in leachate from semi-aerobic lysimeter could be reduced by 90%. In term of gas emission, semi-aerobic lysimeter with un-compacted wastes had much lower methane emission rate of $2.8g/m^2/day$ compare to anaerobic lysimeters ($62.6g/m^2/day$) through seasonal fluctuation was observed. Nevertheless, semi-aerobic lysimeter with waste compaction has similar performance to anaerobic lysimeter.

Comparison of the Effects of Pilates and Aerobic Exercise on Pain, Menstruation Symptoms, and Balance in Women with Dysmenorrhea

  • Lee, Su-Wan;Shin, Won-Seob
    • The Journal of Korean Physical Therapy
    • /
    • v.33 no.5
    • /
    • pp.238-244
    • /
    • 2021
  • Purpose: Menstruation is associated with menstrual symptoms like pain and balance problems which have an impact on the quality of life. Pilates increases pelvic stability and reduces menstrual pain by inducing abdominal muscle contraction. This study was done to evaluate the effects of Pilates on menstrual pain, symptoms, balance, and quality of life when compared to aerobic exercise. Methods: Thirty-nine women with menstrual pain were randomly divided into the Pilates group (n=13), aerobics group (n=13), and control group (n=13). The Pilates group performed lumbar-pelvic stabilization exercises, while the aerobic group ran on a treadmill. The control group did not undergo any intervention. The experimental groups exercised for four weeks (12 sessions) and did not exercise during menstruation. The Y-balance test was performed on the second day of menstruation to evaluate dynamic balance. The questionnaires administered immediately after menstruation were the visual analog scale (VAS), Korea Oswestry Disability Index (ODI), and the modified Menstrual Distress Questionnaire (MDQ). The paired t-test was used to compare the effect of exercise within the three groups and a oneway analysis of variance was used to compare between groups. Results: VAS and MEDI-Q scores significantly decreased in the Pilates group after 4 weeks compared with those in the aerobic and control groups. Moreover, ODI and Y-balance scores increased in the Pilates group compared with those in the aerobic and control groups (p<0.05). Conclusion: The Pilates stabilization exercises are effective and help in improving menstrual pain, balance and other menstrual symptoms assessed through ODI, and MEDI-Q, compared to aerobic exercises.

A Fundermental Study on Stabilization in Municipal Waste Landfill Site (도시폐기물 매립지의 안정화에 관한 기초연구)

  • 김은호;김순호
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.1
    • /
    • pp.56-62
    • /
    • 2001
  • The investigation was carried out to analyze the generation and the composition of landfill gas generated from inserted pipe wells into the underground by boring operation and also study the undecomposed waste characteristics by open-cut test at S. waste landfill site in Pusan city. Pilot test was conducted for stabilization. The experimental results from this study were summerized as follows. ; Since COD matter was easuer decomposed than COD matter for continuously biological stabilization in underground, it seemed that BOD and CO $D_{Mn}$ were in the range of 854~4,813mg/$\ell$ and 1,156~6,977mg/$\ell$ and their ratio were generally as high as 0.55~0.74. As C $H_4$ compositions of generated gas were measured in the range of 37.36~60.1%, we could know that C $H_4$ gas was actively generated. Organic matters by open-cut test averaged 13.4~16.6% at each landfill layer, and considering rate of combustible compositions(36.2~66.5%) for landfilling wastes, they have been actively decomposed. The measured and theoretical values of generated gas in waste landfill site were almost similar to C $H_4$ 50.0% and 53.4%, $CO_2$ 39.63% and 45.24%, and after 0.5$^{\circ}C$ with heavy depth and long landfill period. From the results of pilot test for stabilization, after 180 days organic matters were actively decomposed beyond 2.2 times in facultative aerobic lystimeter(B) to exsiting anaerobic lysimeter(A). Therefore, it seemed that landfill site was of benefical to the conversion of facultative aerobic for stabilization.

  • PDF

Application of the Thermophilic Aerobic Oxidation (TAO) System to Anaerobic Digestate Stabilization in Korea (혐기소화액의 고온호기산화 공정 적용에 관한 연구)

  • Kim, Soo-Ryang;Kim, Ha-Je;Nizel, Halder Joshua;Rhee, Ji-Hae;Shin, Myoung-Chul;Kim, Tae-Ha;Lee, Myung-Gyu
    • Journal of Animal Environmental Science
    • /
    • v.21 no.1
    • /
    • pp.21-28
    • /
    • 2015
  • We studied the possibility on the application of the Thermophilic Aerobic Oxidation (TAO) process to anaerobic digestate stabilization. In treating digestate with TAO reactor the internal temperature of the reactor was increasing higher and $51^{\circ}C$ and over was maintained after 6 days on. The physiochemical compositions of liquids increased from pH 8.1 to 9.8 and EC decreased from 29.8 to 12.0 mS/cm in treating process of digestate with TAO reactor. CODcr decreased from 22,654 to 18,843 mg/L, showed about 16.82% of remove efficiency. TN and $NH_4-N$ decreased from 4,813 to 1,733 mg/L, from 3,815 to 812 mg/L respectively, which showed about 64.0% and 78.7% of removal efficiency respectively.

Characteristics of Stabilization of Excavated Solid Wastes by Aerobic and Anaerobic Landfilling (호기 및 혐기매립에 의한 굴착폐기물의 안정화 특성 연구)

  • Park, Jin-Kyu;Oh, Dong Ik;Lee, Nam-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.12 no.3
    • /
    • pp.76-85
    • /
    • 2004
  • Anaerobic decomposition of municipal solid waste (MSW) had potential adverse impacts such as the production of methane and long-term post closure on human health and the environment. It was demonstrated that aerobic degradation of MSW resulted in the reduction of a methane yield and the enhancement of stabilization of MSW. Excavated solid wastes were both aerobically and anaerobically treated in order to evaluate the effects of air injection on the stabilization of landfill site. The municipal solid waste (MSW) samples were excavated from a 10-year old landfill (operation period: 1991. 11~1994. 11), Jeonju, Korea. Excavated municipal solid wastes are primarily composed of soils and vinyl/plastics. For the two aerobic simulated lysimeters, the levels of $O_2$ ranged 1.6~23.1% and the levels of $CO_2$ ranged 1.5~15.1%, which confirmed the aerobic decomposition. Aeration did prevent methane formation. For the anaerobic simulated lysimeter, the $CO_2$ rose as $O_2$ was consumed and low levels of CH4 were produced. The pH levels ranged from 7.7 to 8.9 for anaerobic lysimeter and from 7.3 to 8.5 for aerobic lysimeters. As expected, aerobic treatment proved to enhance the removal of biodegradable materials in the excavated solid wastes when monitoring the concentration of BOD, COD, $NH_4-N$, and $NO_3-N$ in the leachate.

  • PDF

Aeration Control of Thermophilic Aerobic Digestion Using Fluorescence Monitoring

  • Kim, Young-Kee;Oh, Byung-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.1
    • /
    • pp.93-98
    • /
    • 2009
  • The thermophilic aerobic digestion (TAD) process is recognized as an effective method for rapid waste activated sludge (WAS) degradation and the deactivation of pathogenic microorganisms. Yet, high energy costs due to heating and aeration have limited the commercialization of economical TAD processes. Previous research on autothermal thermophilic aerobic digestion (ATAD) has already reduced the heating cost. However, only a few studies have focused on reducing the aeration cost. Therefore, this study applied a two-step aeration control strategy to a fill-and-draw mode semicontinuous TAD process. The NADH-dependent fluorescence was monitored throughout the TAD experiment, and the aeration rate shifted according to the fluorescence intensity. As a result, the simple two-step aeration control operation achieved a 20.3% reduction in the total aeration, while maintaining an effective and stable operation. It is also expected that more savings can be achieved with a further reduction of the lower aeration rate or multisegmentation of the aeration rate.

Effect of Oxygen and Moisture on Stabilization of Municipal Solid Wastes in Landfill (폐기물매립지에 있어서 산소와 수분이 매립폐기물의 안정화에 미치는 영향)

  • Kim, Hye-Jin;Lee, Nam-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.1
    • /
    • pp.139-150
    • /
    • 2006
  • Landfilling is one of the most widely used methods for the final disposal of solid wastes. Landfilled wastes are degraded by residing microorganisms and the microbial degradation is affected by many factors such as moisture, oxygen, pH, alkalinity, sulphate, nutrient, temperature, and so on. Especially among these factor, oxygen and moisture within aerobic landfill play a major role in microbial degradation. In this study, 1) the effects of oxygen on the velocity of waste degradation and 2) the effect of moisture on the degradation of municipal solids waste (MSW) in aerobic condition were investigated. It was found that the BOD and CODcr concentration from the leachate of aerobic lysimeters dropped faster by 80 days after the start of the test compared to those from the anaerobic lysimeters. To see the effect of moisture, four aerobic lysimeters filled with MSW and four different levels of moisture (20, 30, 40, and 50%) were installed. From this test, higher moisture in MSW produced higher $CO_2$ concentration, meaning moisture was effective for the microbial degradation. thus, we concluded that higher moisture level in the aerobic landfill might help early-stabilization microbial degradation.

  • PDF