• Title/Summary/Keyword: Aerial imagery

Search Result 227, Processing Time 0.03 seconds

A study on aerial triangulation from multi-sensor imagery

  • Lee, Young-ran;Habib, Ayman;Kim, Kyung-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.400-406
    • /
    • 2002
  • Recently, the enormous increase in the volume of remotely sensed data is being acquired by an ever-growing number of earth observation satellites. The combining of diversely sourced imagery together is an important requirement in many applications such as data fusion, city modeling and object recognition. Aerial triangulation is a procedure to reconstruct object space from imagery. However, since the different kinds of imagery have their own sensor model, characteristics, and resolution, the previous approach in aerial triangulation (or georeferencing) is performed on a sensor model separately. This study evaluated the advantages of aerial triangulation of large number of images from multi-sensors simultaneously. The incorporated multi-sensors are frame, push broom, and whisky broom cameras. The limits and problems of push-broom or whisky broom sensor models can be compensated by combined triangulation with frame imagery and vise versa. The reconstructed object space from multi-sensor triangulation is more accurate than that from a single model. Experiments conducted in this study show the more accurately reconstructed object space from multi-sensor triangulation.

  • PDF

Building Modeling Method with LiDAR Data and Aerial Imagery (라이다 데이터와 항공영상에 의한 건물 모델링 방법)

  • Lee, Jin-Hyung;Yoo, Eun-Jin;Lee, Dong-Cheon
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.67-68
    • /
    • 2010
  • Segmentation of LiDAR data is an important procedure in building modeling. Therefore, in this study, aerial imagery is used to group LiDAR data for both improving segmentation accuracy and modeling detail surface patches of the roofs. The results show that the proposed method is efficient to analyze and to model various types of roof shape.

  • PDF

Visualization Of Aerial Color Imagery Through Shadow Effect Correction

  • Sohn, Hong-Gyoo;Yun, Kong-Hyun;Yang, In-Tae;Lee, Kangwon
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.02a
    • /
    • pp.64-72
    • /
    • 2004
  • Correction of shadow effects is critical step for image interpretation and feature extraction from aerial imagery. In this paper, an efficient algorithm to correct shadow effects from aerial color imagery is presented. The following steps have been performed to remove the shadow effect. First, the shadow regions are precisely located using the solar position and the height of ground objects derived from LIDAR (Light Detection and Ranging) data. Subsequently, segmentation of context regions is implemented for accurate correction with existing digital map. Next step, to calculate correction factor the comparison between the context region and the same non-shadowed context region is made. Finally, corrected image is generated by correcting the shadow effect. The result presented here helps to accurately extract and interpret geo-spatial information from aerial color imagery

  • PDF

Building Extraction from Lidar Data and Aerial Imagery using Domain Knowledge about Building Structures

  • Seo, Su-Young
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.3
    • /
    • pp.199-209
    • /
    • 2007
  • Traditionally, aerial images have been used as main sources for compiling topographic maps. In recent years, lidar data has been exploited as another type of mapping data. Regarding their performances, aerial imagery has the ability to delineate object boundaries but omits much of these boundaries during feature extraction. Lidar provides direct information about heights of object surfaces but have limitations with respect to boundary localization. Considering the characteristics of the sensors, this paper proposes an approach to extracting buildings from lidar and aerial imagery, which is based on the complementary characteristics of optical and range sensors. For detecting building regions, relationships among elevation contours are represented into directional graphs and searched for the contours corresponding to external boundaries of buildings. For generating building models, a wing model is proposed to assemble roof surface patches into a complete building model. Then, building models are projected and checked with features in aerial images. Experimental results show that the proposed approach provides an efficient and accurate way to extract building models.

Enhanced Urban Information Recognition through Correction of Shadow Effects (그림자효과 보정을 통한 향상된 도시정보 인식)

  • 손홍규;윤공현;박효근
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.04a
    • /
    • pp.187-190
    • /
    • 2003
  • Due to complexity of diverse features in urban area, accurate feature extraction is laborious task in aerial and satellite imagery. Especially occlusion by buildings, and image distortion of shadow effects make processing more difficult work. In this study, algorithm was presented to correct of shadow effects in aerial color images. This algorithm enables user to accurately interpretate urban information by correction of shadow effects in aerial color images

  • PDF

A Study on Aerial Triangulation from Multi-Sensor Imagery

  • Lee, Young-Ran;Habib, Ayman;Kim, Kyung-Ok
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.3
    • /
    • pp.255-261
    • /
    • 2003
  • Recently, the enormous increase in the volume of remotely sensed data is being acquired by an ever-growing number of earth observation satellites. The combining of diversely sourced imagery together is an important requirement in many applications such as data fusion, city modeling and object recognition. Aerial triangulation is a procedure to reconstruct object space from imagery. However, since the different kinds of imagery have their own sensor model, characteristics, and resolution, the previous approach in aerial triangulation (or georeferencing) is purformed on a sensor model separately. This study evaluated the advantages of aerial triangulation of large number of images from multi-sensors simultaneously. The incorporated multi-sensors are frame, push broom, and whisky broom cameras. The limits and problems of push-broom or whisky broom sensor models can be compensated by combined triangulation with other sensors The reconstructed object space from multi-sensor triangulation is more accurate than that from a single model. Experiments conducted in this study show the more accurately reconstructed object space from multi-sensor triangulation.

A study on the alignment of different sensor data with areial images and lidar data (항공영상과 라이다 자료를 이용한 이종센서 자료간의 alignment에 관한 연구)

  • 곽태석;이재빈;조현기;김용일
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.257-262
    • /
    • 2004
  • The purpose of data fusion is collecting maximized information from combining the data attained from more than two same or different kind sensor systems. Data fusion of same kind sensor systems like optical imagery has been on focus, but recently, LIDAR emerged as a new technology for capturing rapidally data on physical surfaces and the high accuray results derived from the LIDAR data. Considering the nature of aerial imagery and LIDAR data, it is clear that the two systems provide complementary information. Data fusion is consisted of two steps, alignment and matching. However, the complementary information can only be fully utilized after sucessful alignment of the aerial imagery and lidar data. In this research, deal with centroid of building extracted from lidar data as control information for estimating exterior orientation parameters of aerial imagery relative to the LIDAR reference frame.

  • PDF

Analysis of sideward footprint of Multi-view imagery by sidelap changing (횡중복도 변화에 따른 다각사진 Sideward Footprint 분석)

  • Seo, Sang-Il;Park, Seon-Dong;Kim, Jong-In;Yoon, Jong-Seong
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.53-56
    • /
    • 2010
  • An aerial multi-looking camera system equips itself with five separate cameras which enables acquiring one vertical image and four oblique images at the same time. This provides diverse information about the site compared to aerial photographs vertically. However, multi-looking Aerial Camera for building a 3D spatial information don't use a large-size CCD camera, do uses a medium-size CCD camera, if acquiring forward, backward, left and right imagery of Certain objects, Aerial photographing set overlap and sidelap must be considered. Especially, Sideward-looking camera set up by the sidelap to determine whether a particular object can be acquisition Through our research we analyzed of sideward footprint and aerial photographing efficiency of Multi-view imagery by sidelap changing.

  • PDF

Automated Individual Tree Detection and Crown Delineation Using High Spatial Resolution RGB Aerial Imagery

  • Park, Tae-Jin;Lee, Jong-Yeol;Lee, Woo-Kyun;Kwak, Doo-Ahn;Kwak, Han-Bin;Lee, Sang-Chul
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.6
    • /
    • pp.703-715
    • /
    • 2011
  • Forests have been considered one of the most important ecosystems on the earth, affecting the lives and environment. The sustainable forest management requires accurate and timely information of forest and tree parameters. Appropriately interpreted remotely sensed imagery can provide quantitative data for deriving forest information temporally and spatially. Especially, analysis of individual tree detection and crown delineation is significant issue, because individual trees are basic units for forest management. Individual trees in aerial imagery have reflectance characteristics according to tree species, crown shape and hierarchical status. This study suggested a method that identified individual trees and delineated crown boundaries through adopting gradient method algorithm to amplified greenness data using red and green band of aerial imagery. The amplification of specific band value improved possibility of detecting individual trees, and gradient method algorithm was performed to apply to identify individual tree tops. Additionally, tree crown boundaries were explored using spectral intensity pattern created by geometric characteristic of tree crown shape. Finally, accuracy of result derived from this method was evaluated by comparing with the reference data about individual tree location, number and crown boundary acquired by visual interpretation. The accuracy ($\hat{K}$) of suggested method to identify individual trees was 0.89 and adequate window size for delineating crown boundaries was $19{\times}19$ window size (maximum crown size: 9.4m) with accuracy ($\hat{K}$) at 0.80.

Edge preserving method using mean curvature diffusion in aerial imagery

  • Ye, Chul-Soo;Kim, Kyoung-Ok;Yang, Young-Kyu;Lee, Kwae-Hi
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.54-58
    • /
    • 2002
  • Mean curvature diffusion (MCD) is a selective smoothing technique that promotes smoothing within a region instead of smoothing across boundaries. By using mean curvature diffusion, noise is eliminated and edges are preserved. In this paper, we propose methods of automatic parameter selection and implementation for the MCD model coupled to min/max flow. The algorithm has been applied to high resolution aerial images and the results show that noise is eliminated and edges are preserved after removal of noise.

  • PDF