• Title/Summary/Keyword: Aerial application

Search Result 424, Processing Time 0.028 seconds

Effect of Elevated Carbon Dioxide Concentration and Temperature on Yield and Fruit Characteristics of Tomato (Lycopersicon esculentum Mill.) (이산화탄소 및 온도 상승이 토마토 수량 및 과실특성에 미치는 영향)

  • Lee, In-Bog;Kang, Seok-Beom;Park, Jin-Myeon
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.4
    • /
    • pp.428-434
    • /
    • 2008
  • The objective of this study is to investigate the effect of the level of $CO_2$ (370 and $650{\mu}mol\;mol^{-1}$) and temperature (ambient and ambient+$5^{\circ}C$) on tomato growth and fruit characteristics as affected by the application rate of N-fertilizer (68 and $204\;N\;kg\;ha^{-1}$), for the purpose of evaluating the influence of elevated $CO_2$ and temperature on tomato crop. The elevated atmospheric $CO_2$ and temperature increased the plant height and stem diameter for tomato crop, while the differences among the nitrogen(N) application rates were not significantly different. Under the elevated $CO_2$, temperature, and a higher N application rate, the biomass of aerial part increased. The fruit yield showed the same result as the biomass except for the elevated temperature. The elevated temperature made the size of fruit move toward the small, but the elevated $CO_2$ and the application of N-fertilizer were vice versa. The sugar content and pH of fruit juice were affected by nitrogen application rate, but not by the elevated $CO_2$ and temperature. These results showed that both the elevated $CO_2$ and temperature stimulated the vegetative growth of aerial parts for tomato, but each effects on the yield of fruit showed an opposite result between the elevated temperature and $CO_2$. In conclusion, the elevated $CO_2$ increased tomato yield and the ratio of large size of fruit, but the elevated temperature did not. Therefore, to secure the productivity of tomato as nowadays in future environment, it will need to develop new breeder as high temperature-tolerable tomato species or new type of cropping systems.

Development of a 3D Modeling System using a variety of images based on Ubiquitous Environment (유비쿼터스 기반의 다양한 영상을 활용한 3D Modeling System의 구축)

  • Kim, Woo-Sun;Heo, Joon;Shim, Jae-Hyun;Choi, Woo-Jung
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.418-421
    • /
    • 2007
  • It is important to maintain information by application or 3D modeling through the satellite and UAV image which is a real world. The prevention business has recognized the need for accurate 3-D geospatial information around the disaster region to identify objects to 3D modeling. In this paper, we presented an approach to create 3D model and loading, processing the image using GIS techniques, and the digital topographic maps were used for the DEM and the features of the area. The result is a implementation of the simple application that illustrates the objects in 3-D. The presented approach will be used for identifying objects and assisting in regional planning around the airfields.

  • PDF

Digital Twin and Visual Object Tracking using Deep Reinforcement Learning (심층 강화학습을 이용한 디지털트윈 및 시각적 객체 추적)

  • Park, Jin Hyeok;Farkhodov, Khurshedjon;Choi, Piljoo;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.2
    • /
    • pp.145-156
    • /
    • 2022
  • Nowadays, the complexity of object tracking models among hardware applications has become a more in-demand duty to complete in various indeterminable environment tracking situations with multifunctional algorithm skills. In this paper, we propose a virtual city environment using AirSim (Aerial Informatics and Robotics Simulation - AirSim, CityEnvironment) and use the DQN (Deep Q-Learning) model of deep reinforcement learning model in the virtual environment. The proposed object tracking DQN network observes the environment using a deep reinforcement learning model that receives continuous images taken by a virtual environment simulation system as input to control the operation of a virtual drone. The deep reinforcement learning model is pre-trained using various existing continuous image sets. Since the existing various continuous image sets are image data of real environments and objects, it is implemented in 3D to track virtual environments and moving objects in them.

Demonstration of Robust Micromachined Jet Technology and Its Application to Realistic Flow Control Problems

  • Chang Sung-Pil
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.554-560
    • /
    • 2006
  • This paper describes the demonstration of successful fabrication and initial characterization of micromachined pressure sensors and micromachined jets (microjets) fabricated for use in macro flow control and other applications. In this work, the microfabrication technology was investigated to create a micromachined fluidic control system with a goal of application in practical fluids problems, such as UAV (Unmanned Aerial Vehicle)-scale aerodynamic control. Approaches of this work include: (1) the development of suitable micromachined synthetic jets (microjets) as actuators, which obviate the need to physically extend micromachined structures into an external flow; and (2) a non-silicon alternative micromachining fabrication technology based on metallic substrates and lamination (in addition to traditional MEMS technologies) which will allow the realization of larger scale, more robust structures and larger array active areas for fluidic systems. As an initial study, an array of MEMS pressure sensors and an array of MEMS modulators for orifice-based control of microjets have been fabricated, and characterized. Both pressure sensors and modulators have been built using stainless steel as a substrate and a combination of lamination and traditional micromachining processes as fabrication technologies.

Near-Optimal Collision Avoidance Maneuvers for UAV

  • Han, Su-Cheol;Bang, Hyo-Choong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1999-2004
    • /
    • 2004
  • Collision avoidance for the aircraft can be stated as a problem of maintaining a safe distance between aircrafts in conflict. Optimal collision avoidance problem seeks to minimize the given cost function while simultaneously satisfying the constraints. The cost function can be a function of time or input. This paper addresses the trajectory time-optimization problem for collision avoidance of the unmanned aerial vehicles. The problem is difficult to handle, because it is a two points boundary value problem with dynamic environment. Some simplifying algorithms are used for application in on-line operation. Although there are more complicated problems, by prediction of conflict time and some assumptions, we changed a dynamic environment problem into a static one.

  • PDF

Utilization of Satellite Imagery for Telematics (위성영상정보의 텔레매틱스 활용 방안)

  • 손홍규;이중근;박정환;최종현
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.399-404
    • /
    • 2004
  • Recently GPS has been playing an increasingly important role in geodesy and positioning, for example, car navigation system, surveying, ITS(intelligent transport systems), LBS(Location Based Service) and so on. For telematics application, reception conditions of GPS signal are important. In some situation, such as in areas between buildings, metropolitan areas or areas with large skyscraper complexes, there are situations whereby the satellite signal is seriously restricted by various obstacles. Before the signal arrives at the receiver, it may be blocked, reflected, delayed, attenuated or scattered by terrestrial obstacles such as buildings. In this paper, we present satellite imagery data for telematics application. Therefore, for propriety of this studies, we made a GPS satellite visibility experiments in Bun-Dang on same time. This paper describes an approach to calculate building level using 0.6m, 1m, 6.6m resampling aerial polo imagery in stead of the satellite imagery and make a comparative study of accuracy. This paper tests the simulation of GPS signal using the building level.

  • PDF

A Study on Application of the UAV in Korea for Integrated Operation with Spatial Information (무인항공기(UAV)의 공간정보 통합운영을 위한 국내적용 방안)

  • Yun, Bu Yeol;Lee, Jae One
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.2
    • /
    • pp.3-9
    • /
    • 2014
  • With broadcasting telecommunication, rapid change detection, and construction of spatial information, a long reconnaissance, resources detection in dangerous area and natural disasters, which are difficult for manned aerial vehicles to perform, international recognition in UAV merely being used for limited military purposes has been changed and its demand for both civil and military purpose have been increased. However, considering the current situation that availability of UAV varies and its working areas also broaden, the stability of UAV and the problems of privacy protection are more important in integrated operation of UAV. In particular, the application of UAV system is urgent for the area where rapid decision making due to expedite data construction such as disaster, calamity, and the acquisition of spatial information for small area are required. However, since technical stability for UAV system and institutional regulation in regard of spatial information are not examined, and UAV system has not been integrated with aerial photograph, the limitation of UAV system has been presented. Thus, this study is aimed at analyzing domestic and foreign research trend and institutional research trend in terms of integrated UAV operation, and proposing its implications and the availability of integrated UAV operation for future national spatial information data construction.

Constructing Forest Information Management System using GIS and Aerial Orthophoto (GIS와 항공정사사진을 이용한 산림정보 관리시스템 구축)

  • Kim, Joon-Bum;Jo, Myung-Hee;Kwon, Tae-Ho;Kim, In-Ho;Jo, Yun-Won;Shin, Dong-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.2
    • /
    • pp.57-68
    • /
    • 2004
  • Recently in order to more effectively and scientifically process forest official tasks, which have been focused on documents and inventories, they should be applied with the up-to-date spatial information technologies. Especially, the forest resource information management based on GIS(geographic information system) and aerial orthophoto is expected not only to play an important role as DSS(decision support system) for domestic forest conservation policy and forestry development industry but also to service forest resource information toward people such as the owners of a mountain rapidly. In this study, the important forest information such as digital topography map, digital forest type map, digital forest cadastral map, digital aerial photographs and attribute data were first reprocessed and constructed in DBMS(data base management system). In addition, forest officials could analyze and retrieve forest information by using detail sub-application systems such as forest cadastral retrieval, forest land development information management, reserved forest information management and forest resource information retrieval. For this, the user interface is developed by using Visual Basic 6.0 and MapObjects 2.1 of ESRI based on CBD(component based development) technology. The result of developing this system will not only perform constructing economical forest and better environment but also be the foundation of domestic spatial technology for forest resource management.

  • PDF

Automatic Generation of Land Cover Map Using Residual U-Net (Residual U-Net을 이용한 토지피복지도 자동 제작 연구)

  • Yoo, Su Hong;Lee, Ji Sang;Bae, Jun Su;Sohn, Hong Gyoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.5
    • /
    • pp.535-546
    • /
    • 2020
  • Land cover maps are derived from satellite and aerial images by the Ministry of Environment for the entire Korea since 1998. Even with their wide application in many sectors, their usage in research community is limited. The main reason for this is the map compilation cycle varies too much over the different regions. The situation requires us a new and quicker methodology for generating land cover maps. This study was conducted to automatically generate land cover map using aerial ortho-images and Landsat 8 satellite images. The input aerial and Landsat 8 image data were trained by Residual U-Net, one of the deep learning-based segmentation techniques. Study was carried out by dividing three groups. First and second group include part of level-II (medium) categories and third uses group level-III (large) classification category defined in land cover map. In the first group, the results using all 7 classes showed 86.6 % of classification accuracy The other two groups, which include level-II class, showed 71 % of classification accuracy. Based on the results of the study, the deep learning-based research for generating automatic level-III classification was presented.

Improvement of Ortho Image Quality by Unmanned Aerial Vehicle (UAV에 의한 정사영상의 품질 개선 방안)

  • Um, Dae-Yong;Park, Joon-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.568-573
    • /
    • 2018
  • UAV(Unmanned Aerial Vehicle) is widely used in space information construction, agriculture, fisheries, weather observation, communication, and entertainment fields because they are cheaper and easier to operate than manned aircraft. In particular, UAV have attracted much attention due to the speed and cost of data acquisition in the field of spatial information construction. However, ortho image images produced using UAVs are distorted in buildings and forests. It is necessary to solve these problems in order to utilize the geospatial information field. In this study, fixed wing, rotary wing, vertical take off and landing type UAV were used to detect distortions of ortho image of UAV under various conditions, and various object areas such as construction site, urban area, and forest area were captured and analysed. Through the research, it was found that the redundancy of the unmanned aerial vehicle image is the biggest factor of the distortion phenomenon, and the higher the flight altitude, the less the distortion phenomenon. We also proposed a method to reduce distortion of orthoimage by lowering the resolution of original image using DTM (Digital Terrain Model) to improve distortion. Future high-quality unmanned aerial vehicles without distortions will contribute greatly to the application of UAV in the field of precision surveying.