• Title/Summary/Keyword: Aerial Photographs

Search Result 298, Processing Time 0.027 seconds

Automatic Identification of Fiducial Marks Existing on Aerial Photographs (항공사진에 포함된 기점 마크의 자동 인식)

  • 조성익;방기인
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.556-558
    • /
    • 2002
  • 항공사진에 포함된 기점 마크의 방사 및 기하 특성을 이용하여 마크의 중심 위치를 자동으로 인식하기 위한 방안을 제안한다. 마크를 포함하는 배경 영역의 방사 특성에 기반을 푼 전략에 근거하여 입력된 영상을 이치화한 다음 형태 연산자를 적용시켜 기전 마크가 있는 후보 영역을 추출한다. 기하 특성에 기반을 둔 전략에 근거하여 ▽$^2$G 필터링과 대칭성 강조 필터링을 적용시킨 후, 대칭이 가장 강하게 나타나는 위치인 마크의 중심 위치를 구한다. 66매의 기점 마크 영상에 대한 평가 결과 중심 위치가 1 화소의 정확도까지 얻어질 수 있다는 것을 확인할 수 있었다.

  • PDF

Channel Evaluation for Abandoned Channel Restoration Using Image Analysis Technique (영상분석기법을 이용한 구하도 복원 대상하천의 하도평가)

  • Hong, Il;Kang, Joon-Gu;Kwon, Bo-Ae;Yeo, Hong-Koo
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.5
    • /
    • pp.397-406
    • /
    • 2009
  • River is able to change by various environmental factors. In order to conduct restoration design of abandoned river channels, it is necessary to evaluate the river through the analysis of past and present river channels. River evaluation requires various data, such as geometry, hydraulic and hydrology, but there is a lot of difficulty to understand topographical information of river change on time and space due to a lack of past data by domestic conditions. This study analyzes the changes in past and present river channels and examines the applicability of river channel evaluation through image analysis using aerial photographs and 1918 year's map. Aerial photograph analysis was conducted by applying the image analysis method and GIS analysis method on Cheongmicheon. As a result of this analysis, we have quantitatively identified the form and size of abandoned channels, changes in the vertical-section and cross-section length of rivers, and micro-landform changes. More importantly, we verified that morphological changes in sandbars due to artificial straightening are important data in identifying the state of current river channels. In these results, although image analysis technique has limitations in two-dimensional information from aerial photographs, we were able to evaluate the changes in river channel morphology after artificial maintenance of the river.

Analysis of Individual Tree Change Using Aerial Photograph in Deforested area Before and After Road Construction (항공영상을 활용한 도로개발 전·후 산림 훼손지 개체목 분석)

  • Choi, Jae-Yong;Kim, Seoung-Yeal;Kim, Whee-Moon;Song, Won-Kyong;Lee, Ji-Young;Choi, Won-Tae;Moon, Guen-Soo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.21 no.4
    • /
    • pp.65-73
    • /
    • 2018
  • Although the road construction in forest is increasing and there is a need for development ecological restoration on deforest area, no consideration has been given to individual trees in there. This study analyzed aerial photographs of deforest area before and after road construction for determining the degree of forest destruction by extracting individual trees. Study area was selected in the sites where are damaged by road construction in GongJu-si, YuSung-gu, and YeongDong-gun. The aerial photograph taken 1979 before construction is panchromatic image of 80cm in GSD (Ground Sample Distance) and other photograph taken 2016 after construction is multi-spectral image of 10cm in GSD. In order to minimize the difference of GSD, we conducted image re-sampling process for setting to same GSD for the two photographs. After that we carried out visual interpretation method for determining to change of individual tree. The result found that for GongJu-si of the number of individual tree was 1,014 in 1979 and 886 in 2016, which decreased by 128 (12.6%) and the average width of those decreased from 5.77m to 5.75m by 0.47%. In case of YoungDong-gun, the number of it was 761 in 1979 and 746 in 2016, which decreased by 2.0% and the average width of it decreased from 8.99mm to 8.90m by 1.1%. Lastly in case of YuSung-gu, the number of it was 1,578 in 1979 and 988 in 2016, which decreased by 37.4% and the average width of it decreased from 7.09m to 6.65m by 6.21%. these result imply that road construction causes destruction of forests. Since there are limitations such as errors due to researcher, it is necessary to construct a quantitative analysis method for the change of the deforest area. It is need to study the method of extracting individual tree in deforest area more accurately using high-resolution image of GSD 10cm or more as well. This study can be used as a basic data for the ecological restoration of the deforest area considering characteristics of individual tree such as height, diameter at breast height, and biomass.

Towards 3D Modeling of Buildings using Mobile Augmented Reality and Aerial Photographs (모바일 증강 현실 및 항공사진을 이용한 건물의 3차원 모델링)

  • Kim, Se-Hwan;Ventura, Jonathan;Chang, Jae-Sik;Lee, Tae-Hee;Hollerer, Tobias
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.2
    • /
    • pp.84-91
    • /
    • 2009
  • This paper presents an online partial 3D modeling methodology that uses a mobile augmented reality system and aerial photographs, and a tracking methodology that compares the 3D model with a video image. Instead of relying on models which are created in advance, the system generates a 3D model for a real building on the fly by combining frontal and aerial views. A user's initial pose is estimated using an aerial photograph, which is retrieved from a database according to the user's GPS coordinates, and an inertial sensor which measures pitch. We detect edges of the rooftop based on Graph cut, and find edges and a corner of the bottom by minimizing the proposed cost function. To track the user's position and orientation in real-time, feature-based tracking is carried out based on salient points on the edges and the sides of a building the user is keeping in view. We implemented camera pose estimators using both a least squares estimator and an unscented Kalman filter (UKF). We evaluated the speed and accuracy of both approaches, and we demonstrated the usefulness of our computations as important building blocks for an Anywhere Augmentation scenario.

A Stereo Matching Method for Photogrammetric Orientation (사진측량의 표정을 위한 스테레오 매칭 방법)

  • 최재화;박희주;서용운
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.14 no.1
    • /
    • pp.9-16
    • /
    • 1996
  • A new stereo matching method for the relative orientation and the photogrammetric triangulation has been pro-posed. It matches the pairs of conjugate points to be used as pass points and tie points in digital aerial photographs instead of selecting these points with manual point transfer and measurements. Three unique steps included in the proposed matching method are as followings. The first step is searching interest points, and designating them as candidate points to be matched. The second is matching the points from the pair of images by the Cross Correlation Method in both direction(left to right direction and right to left). The third is selecting consistent pairs in the both matching directions. Computer programs based on the proposed matching method have been developed, and with digital aerial photographs which have full ground coordinate information tests were performed to know reliabiliy and positional accuracy of proposed method. Results of the tests reveal that the proposed matching method can eliminate the in-correctly matched pairs more efficiently than other matching methods, thus this can be more reliably applied to the relative orientation and the photogrammetric triangulation.

  • PDF

Construction of Management System of Road Position Information Using GPS Surveying Data

  • Kim, Jin-Soo;Roh, Tae-Ho;Lee, Jong-Chool
    • Korean Journal of Geomatics
    • /
    • v.3 no.1
    • /
    • pp.15-22
    • /
    • 2003
  • This study aims to construct a management system of road position information as part of the build-up to a maintenance and management system of highways. First, information on the positions of the roads were obtained by a real-time kinematic satellite surveying, and then the degree of accuracy was analyzed in comparison with the data of the existing design drawings. The linear coordinates of road center line obtained by using RTK GPS showed about 7.6-13.2cm errors in X and Y directions in the case of the national road No.2 section, and about 8.4-9.2cm errors in the case of local road No.1045 section. These errors were within the tolerance scope regulated by the TS survey, and could be practically used. In the case of vertical alignment, there were about 6.2cm errors in the Z direction in local road No.1045 section. Aerial photographs are normally used in producing numerical maps, and it can be practically used because the tolerance scope of the elevation control point is l0cm when the scale of aerial photographs is 1/1000. The management system of road position information, utilizing Object-Oriented Programming(OOP), was built having the data acquired in this way as the attribute data. The system developed in this way can enable us to spot the positions of road facilities, the target of management with ease, to easily update the data in case of changes in the positions of roads and road facilities, and to manage the positions of roads and road facilities more effectively.

  • PDF

A Study on the Effectual use and Management of the Coast by means of Photogrammetry and Remote Sensing (항공사진(航空寫眞)에 의한 해안(海岸)의 효율적 이용관리 방안에 관한 연구)

  • Yang, In-Tae
    • Journal of Industrial Technology
    • /
    • v.7
    • /
    • pp.15-25
    • /
    • 1987
  • Eeffectual use or management of coastal zone is very important problem inside of protection of marine resources as well as land use. Coastal Phenomena are very strong in its locality, each coast has its characteristic problem. Occasionaly we have to solve such problem by three dimension, but it is very difficult to solve it by traditional methods. If we use aerial stereo photographs, we can obtain high usefullness in coastal zone management. Also aerial photographs are very effectual to explain corelation of time to coastal dynamic phenomena and pattern which can not be explained by formula. Images obtained from remote sensors or radiometers bring up usefull informations to planer conected with coastal zone management, have additional value which can be treated and quantitatively analized so as to be read automaticaly and present speedy and low-priced techniques. So, I insist on that sooner or later total image procssor system for Remote Sensing and photo interpretation system must be established in our nation.

  • PDF

Analysis of Geomorphological Changes using RS and GIS techniques in Shinduri coastal dunefield (원격탐사와 GIS 기법을 이용한 신두리 해안사구지대의 지형변화 분석)

  • Seo, Jong-Cheol
    • Journal of the Korean association of regional geographers
    • /
    • v.8 no.1
    • /
    • pp.98-109
    • /
    • 2002
  • The long term land-cover changes and the pattern of morphological changes in foredune ridges and unvegetated dunes were investigated for about 30 years through analysing aerial photographs in Shinduri coastal dunefield, Korea. As a result, forested dune area increased while unvegetated dune area decreased continuously since 1967. Foredune ridges retreated landward about 80m away from the former coast-line in the middle part while they advanced seaward after construction of dike in the northern part during last 3 decades. Unvegetated dunes in the middle part of the dunefield were eroded at seaward side and moved landward away. These facts mean not only coastal dune area has been affected by man-made effects such as afforestation and coastal developments but also shinduri coastal dune area has been stabilized by plants and has been negative sediment budget.

  • PDF

Forest Change Detection Service Based on Artificial Intelligence Learning Data (인공지능 학습용 데이터 기반의 산림변화탐지 서비스)

  • Chung, Hankun;Kim, Jong-in;Ko, Sun Young;Chai, Seunggi;Shin, Youngtae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.8
    • /
    • pp.347-354
    • /
    • 2022
  • Since the era of the 4th industrial revolution has been ripe, the use of artificial intelligence(AI) based on massive data is beginning to be actively applied in various fields. However, as the process of analyzing forest species is carried out manually, many errors are occurring. Therefore, in this paper, about 60,000 pieces of AI learning data were automatically analyzed for pine, larch, conifer, and broadleaf trees of aerial photographs and pseudo images in the metropolitan area, and an AI model was developed to distinguish tree species. Through this, it is expected to increase in work efficiency by using the tree species division image as basic data when producing forest change detection and forest field topics.

Development of a Prototype System for Aquaculture Facility Auto Detection Using KOMPSAT-3 Satellite Imagery (KOMPSAT-3 위성영상 기반 양식시설물 자동 검출 프로토타입 시스템 개발)

  • KIM, Do-Ryeong;KIM, Hyeong-Hun;KIM, Woo-Hyeon;RYU, Dong-Ha;GANG, Su-Myung;CHOUNG, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.4
    • /
    • pp.63-75
    • /
    • 2016
  • Aquaculture has historically delivered marine products because the country is surrounded by ocean on three sides. Surveys on production have been conducted recently to systematically manage aquaculture facilities. Based on survey results, pricing controls on marine products has been implemented to stabilize local fishery resources and to ensure minimum income for fishermen. Such surveys on aquaculture facilities depend on manual digitization of aerial photographs each year. These surveys that incorporate manual digitization using high-resolution aerial photographs can accurately evaluate aquaculture with the knowledge of experts, who are aware of each aquaculture facility's characteristics and deployment of those facilities. However, using aerial photographs has monetary and time limitations for monitoring aquaculture resources with different life cycles, and also requires a number of experts. Therefore, in this study, we investigated an automatic prototype system for detecting boundary information and monitoring aquaculture facilities based on satellite images. KOMPSAT-3 (13 Scene), a local high-resolution satellite provided the satellite imagery collected between October and April, a time period in which many aquaculture facilities were operating. The ANN classification method was used for automatic detecting such as cage, longline and buoy type. Furthermore, shape files were generated using a digitizing image processing method that incorporates polygon generation techniques. In this study, our newly developed prototype method detected aquaculture facilities at a rate of 93%. The suggested method overcomes the limits of existing monitoring method using aerial photographs, but also assists experts in detecting aquaculture facilities. Aquaculture facility detection systems must be developed in the future through application of image processing techniques and classification of aquaculture facilities. Such systems will assist in related decision-making through aquaculture facility monitoring.