• Title/Summary/Keyword: Aerial Photo

Search Result 182, Processing Time 0.026 seconds

Development of Spatial Landslide Information System and Application of Spatial Landslide Information (산사태 공간 정보시스템 개발 및 산사태 공간 정보의 활용)

  • 이사로;김윤종;민경덕
    • Spatial Information Research
    • /
    • v.8 no.1
    • /
    • pp.141-153
    • /
    • 2000
  • The purpose of this study is to develop and apply spatial landslide information system using Geographic information system (GIS) in concerned with spatial data. Landslide locations detected from interpretation of aerial photo and field survey, and topographic , soil , forest , and geological maps of the study area, Yongin were collected and constructed into spatial database using GIS. As landslide occurrence factors, slope, aspect and curvature of topography were calculated from the topographic database. Texture, material, drainage and effective thickness of soil were extracted from the soil database, and type, age, diameter and density of wood were extracted from the forest database. Lithology was extracted from the geological database, and land use was classified from the Landsat TM satellite image. In addition, landslide damageable objects such as building, road, rail and other facility were extracted from the topographic database. Landslide susceptibility was analyzed using the landslide occurrence factors by probability, logistic regression and neural network methods. The spatial landslide information system was developed to retrieve the constructed GIS database and landslide susceptibility . The system was developed using Arc View script language(Avenue), and consisted of pull-down and icon menus for easy use. Also, the constructed database can be retrieved through Internet World Wide Web (WWW) using Internet GIS technology.

  • PDF

Transportation Digital Map Quality Guarantee Scheme for Analytic Network Building (분석용 네트워크구축을 위한 교통주제도 품질확보방안)

  • Choi Jung-Min;Joo Yong Jin;Choi Ae Sim
    • Spatial Information Research
    • /
    • v.12 no.3
    • /
    • pp.285-298
    • /
    • 2004
  • Transportation digital map has built based on NGIS (national geography institute's 1 :5000 digital database) which derived from the aerial photo materials. Transportation digital map is a part of National Transportation Database Building Project carried out by the Korea Transport Institute and Ministry of Construction and Transportation. Transportation digital map for the purpose of transportation plan and investment has been updated and corrected the NGIS database especially for road network. Transportation digital map database is essential basic data fully applied for transportation policy and planning. The database must be reliable and objective to be applied for national transportation policy decision and transportation analysis. In addition, it needs accuracy and currentness to reflect the road network for the survey year. To satisfy the purpose of the database, following steps are necessary first, data Production and building has to be done by guideline of survey and database building. Secondly, geometric and logical errors which can occur during the survey and database building should be carefully detected. Thirdly, sectional guideline for database examination and procedure needs to be set up systematically and coherently This study is about examination guidelines for section and procedure on nodes and links which are essential object in transportation digital map database. According to the type of error, consistent and systematic error examination can lead to quality guarantee for objective and reliable database.

  • PDF

A Comparative Analysis on Image Structures of Jeju 'Oreum' between Koreans and Foreigners (제주 '오름'에 대한 내국인과 외국인의 경관이미지 비교 분석)

  • Suh, Joo-Hwan;Kim, Sang-Beom;Rho, Jae-Hyun;Huh, Joon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.37 no.1
    • /
    • pp.65-77
    • /
    • 2009
  • This study conducted a comparative analysis between Koreans and foreigners on how they feel of the 'Oreum' so that the data could be used to conserve and utilize 'Oreum' as a brand of Jeju, which is one of the natural and original sceneries of the island along with Halla Mountain. Four aerial photo slides were selected to be assessed among 18 overlooked views of 'Oreums' through quasi-preliminary and preliminary surveys. The assessment group was divided into native and foreigner groups. Image and preference were measured based on 7 step categorization on 26 adjectives, and factor analysis was implemented. The selected factors from factor analysis reflected that calmness was recognized as common image identification variable to natives and foreigners. However, foreigners choose 'dynamics', 'peculiarity' and 'grandeur' in order to explain the image while Koreans selected words in the order of 'attractiveness', 'grandeur', 'dynamics' and 'peculiarity'. This means Koreans identify the image of 'Oreum' as absolute beauty while foreigners see the dynamics and relative peculiarity as its attractive point. As a result of factor score, preference and multiple regression analysis, Koreans selected 'calmness', 'attractiveness' and 'dynamics' as important variables to explain preference. On the other hand, foreigners choose 'dynamics' and 'calmness' as well as 'evenness', 'peculiarity' and 'simplicity'. This represents that foreigners are highly influenced by the structural peculiarity and simplicity on the image preference.

Development of Learning Place for Geologic Field Survey around the Duta Mountain, Chungbuk, Korea (충북 괴산군 두타산 일대의 야외지질조사 학습장 개발)

  • Lee, Chang-Xin;Cheong, Sang-Won
    • Journal of the Korean earth science society
    • /
    • v.26 no.1
    • /
    • pp.41-57
    • /
    • 2005
  • The purpose of the study is to develop a educational data in order for students to perform geologic field survey effectively by themselves. A area around the Duta Mountain is selected. which is located at the southeastern part of Eumsung sedimentary basin because various rock types and geologic structures are well shown in this area and also it is convenient to reach there. Thirteen stops for observation are chosen m a route f3r exercising field geologic investigation. Data for field research are given and described in detail from each stop for observation. To do this, students make their own route map using general or digital geographic map and aerial photo is added to know relationship between large-scale structure and different rock types regionally. Moreover, it is designed to minimize conflict factors that may be experienced from the real field survey by showing outcrop photographs and polarizing photomicrographs of rut samples related to each stop and geologic structures. The attitude of students is investigated with the data of field geologic survey for students of an Earth Science class in the College of Education in Chungbuk National University. The results indicate that the educational data for geologic field survey brought positive changes that greatly help students perform field survey in definitive side, especially formation of absolute concepts on earth science.

Manufacture Lenticular Map of Golf Courses Using Digital Orthophoto (수치정사영상을 이용한 렌티큘러 코스맵 제작)

  • Kim, Kam-Lae;Cheong, Hae-Jin;Cho, Won-Woo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.5
    • /
    • pp.475-482
    • /
    • 2007
  • Most golfers believe that knowing yardages will improve their score. Certainly it helps with club selection. But, simple "Graphic" yardage guides being notorious for error and inaccuracies, which a serious golfer will pick immediately, only serve to erode the players enjoyment and ultimately, golf course satisfaction. Someone believes with low-level aerial photographic images, golfer will be impressed with the accuracy of the depiction, helping them play a more confident game. But, there are no mapping products in true 3-D available in the world that allows a golfer to determine shot distances in yards or meters. So, we suggest an lenticular technology for real 3-D display as a viable alternative to conventional image map solution. This technology is an image display method for the generation of multi-image effects like 3D visualization or animation. This methodology is cutting edge stereoscopic image which overcomes the limitation of conventional photo tech by recomposing and producing 3 dimensional images. A significant strength of this methods its versatility concerning display effects. The main use of the hardcopy 3-D lenticular displays is in the fields of science, education, planning, and representation. This paper gives a concise overview of the lenticular foil technology and describes the production of the true 3-D yardage book of golf courses. For this study, 3-D effects are achieved and evaluated with the lenticular display by incorporation multiple synthetic images based on digital topographic terrain model and by using the two images of the actual stereopair.

Development of 3D Digital Map Editing System (3차원 수치지도 편집 시스템 개발)

  • Lee, Jae-Kee;Park, Ki-Surk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.3
    • /
    • pp.239-247
    • /
    • 2007
  • The 3D spatial information projects have been processed and utilized in varied fields. However, the research of the 3D digital map for a role of national base map is not enough. The draft maps, which are raw data for generating 2D digital map, shows problems in generating 3D digital map. The objective of this research is to develop 3D digital map editing system for modifying and editing of 3D digital map from 2D vector and raster information such as a draft map, 2D digital map, DEM, aerial photo and so forth. This 3D digital map editing system was designed to include data structure of geometric and attribute object under provision of ISO/TC211 and OGC standard. This system was developed to implement the function of 3D stereo editing based on stereo viewing, 3D view editing based on projective, and 3D spatial operation. Using this system, 3D digital maps were able to be successfully produced from not only existing draft maps but also modified or edited draft maps and then application results were compared and analyzed.

Spectral Mixture Analysis Using Hyperspectral Image for Hydrological Land Cover Classification in Urban Area (도시지역의 수문학적 토지피복 분류를 위한 초분광영상의 분광혼합분석)

  • Shin, Jung-Il;Kim, Sun-Hwa;Yoon, Jung-Suk;Kim, Tae-Geun;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.6
    • /
    • pp.565-574
    • /
    • 2006
  • Satellite images have been used to obtain land cover information that is one of important factors for hydrological analysis over a large area. In urban area, more detailed land cover data are often required for hydrological analysis because of the relatively complex land cover types. The number of land cover classes that can be classified with traditional multispectral data is usually less than the ones required by most hydrological uses. In this study, we present the capabilities of hyperspectral data (Hyperion) for the classification of hydrological land cover types in urban area. To obtain 17 classes of urban land cover defined by the USDA SCS, spectral mixture analysis was applied using eight endmembers representing both impervious and pervious surfaces. Fractional values from the spectral mixture analysis were then reclassified into 17 cover types according to the ratio of impervious and pervious materials. The classification accuracy was then assessed by aerial photo interpretation over 10 sample plots.

Applicability Assessment of Disaster Rapid Mapping: Focused on Fusion of Multi-sensing Data Derived from UAVs and Disaster Investigation Vehicle (재난조사 특수차량과 드론의 다중센서 자료융합을 통한 재난 긴급 맵핑의 활용성 평가)

  • Kim, Seongsam;Park, Jesung;Shin, Dongyoon;Yoo, Suhong;Sohn, Hong-Gyoo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_2
    • /
    • pp.841-850
    • /
    • 2019
  • The purpose of this study is to strengthen the capability of rapid mapping for disaster through improving the positioning accuracy of mapping and fusion of multi-sensing point cloud data derived from Unmanned Aerial Vehicles (UAVs) and disaster investigation vehicle. The positioning accuracy was evaluated for two procedures of drone mapping with Agisoft PhotoScan: 1) general geo-referencing by self-calibration, 2) proposed geo-referencing with optimized camera model by using fixed accurate Interior Orientation Parameters (IOPs) derived from indoor camera calibration test and bundle adjustment. The analysis result of positioning accuracy showed that positioning RMS error was improved 2~3 m to 0.11~0.28 m in horizontal and 2.85 m to 0.45 m in vertical accuracy, respectively. In addition, proposed data fusion approach of multi-sensing point cloud with the constraints of the height showed that the point matching error was greatly reduced under about 0.07 m. Accordingly, our proposed data fusion approach will enable us to generate effectively and timelinessly ortho-imagery and high-resolution three dimensional geographic data for national disaster management in the future.

Extraction of Individual Trees and Tree Heights for Pinus rigida Forests Using UAV Images (드론 영상을 이용한 리기다소나무림의 개체목 및 수고 추출)

  • Song, Chan;Kim, Sung Yong;Lee, Sun Joo;Jang, Yong Hwan;Lee, Young Jin
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1731-1738
    • /
    • 2021
  • The objective of this study was to extract individual trees and tree heights using UAV drone images. The study site was Gongju national university experiment forest, located in Yesan-gun, Chungcheongnam-do. The thinning intensity study sites consisted of 40% thinning, 20% thinning, 10% thinning and control. The image was filmed by using the "Mavic Pro 2" model of DJI company, and the altitude of the photo shoot was set at 80% of the overlay between 180m pictures. In order to prevent image distortion, a ground reference point was installed and the end lap and side lap were set to 80%. Tree heights were extracted using Digital Surface Model (DSM) and Digital Terrain Model (DTM), and individual trees were split and extracted using object-based analysis. As a result of individual tree extraction, thinning 40% stands showed the highest extraction rate of 109.1%, while thinning 20% showed 87.1%, thinning 10% showed 63.5%, and control sites showed 56.0% of accuracy. As a result of tree height extraction, thinning 40% showed 1.43m error compared with field survey data, while thinning 20% showed 1.73 m, thinning 10% showed 1.88 m, and control sites showed the largest error of 2.22 m.

Classification of Forest Vertical Structure Using Machine Learning Analysis (머신러닝 기법을 이용한 산림의 층위구조 분류)

  • Kwon, Soo-Kyung;Lee, Yong-Suk;Kim, Dae-Seong;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.229-239
    • /
    • 2019
  • All vegetation colonies have layered structure. This layer is called 'forest vertical structure.' Nowadays it is considered as an important indicator to estimate forest's vital condition, diversity and environmental effect of forest. So forest vertical structure should be surveyed. However, vertical structure is a kind of inner structure, so forest surveys are generally conducted through field surveys, a traditional forest inventory method which costs plenty of time and budget. Therefore, in this study, we propose a useful method to classify the vertical structure of forests using remote sensing aerial photographs and machine learning capable of mass data mining in order to reduce time and budget for forest vertical structure investigation. We classified it as SVM (Support Vector Machine) using RGB airborne photos and LiDAR (Light Detection and Ranging) DSM (Digital Surface Model) DTM (Digital Terrain Model). Accuracy based on pixel count is 66.22% when compared to field survey results. It is concluded that classification accuracy of layer classification is relatively high for single-layer and multi-layer classification, but it was concluded that it is difficult in multi-layer classification. The results of this study are expected to further develop the field of machine learning research on vegetation structure by collecting various vegetation data and image data in the future.