• 제목/요약/키워드: Aeration tank

검색결과 142건 처리시간 0.028초

상수 정화법에 관한 연구 (폭기식 다단여과에 의한 호기성균의 생물화학적 산화작용을 응용) (A Study on Purification of Water Works by Multi-filter Bed Method with Aeration(Appliction of Biological Oxidation by Aerobic Microorganism))

  • 정요한;문재규;주흥규;서화중
    • Journal of Preventive Medicine and Public Health
    • /
    • 제5권1호
    • /
    • pp.43-48
    • /
    • 1972
  • 5 bed sand filter, applying biological oxidation, was designed and studied on the treatment of water works. Never using any coagulant agent (drugs), which may cause water pollution in pre-treatment of head water, the auther attempt a high rate filtration by the microorganism (nitrofication bacteria) end plant which populate in multi layer sand beds. The result are as follows : In order to evaluate the oxygen effect on filtration, oxygen was injected in aeration tank attached to each filter tank while filtration, and $NH_3$ was tested as a representaiive ingredient. It was found out that the aeration method was more effective, with over 33% of $NH_3$ removal capacity, than the anerobic and this 5 bed filter showed double removal capacity of $NH_3$ by comparing with conventional sand bed (2 stage bed). According to the examination of two kind of head water, pre-treated with coagulant agent and activated carton, the filtration capacity was affected by the polluted condition of head water, resulting that lower value of pollution and slower velocity of filtration showed more efficiency of $NH_3$ removal. In this experiment $NH_3$ content tested in treated water had a fairly good correlation with others.

  • PDF

Study on the Systematic Technology of Promoting Purification for the Livestock Wastewater and Reuse

  • Okada, Yoshiichi;Shim, Jae-Do;Mitarai, Masahumi;Kojima, Takayuki;Gejima, Yoshinori
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1996년도 International Conference on Agricultural Machinery Engineering Proceedings
    • /
    • pp.692-700
    • /
    • 1996
  • The objective of this study is to develop a systematic purification plant using the metabolism of aerobic microorganisms. This system is subsequently aerated and continuously removes suspended solids and settling sludges caused by aerating pressure at the bottom of a lower pipe (i.e., Continuous Removal of Suspended solids and Settling sludges, CRSS). The CRSS plants are brought out by introducing fine air bubbles into the liquid phase of a lower pipe in the bio-reactor. These plant uses aeration pipe, with multiple inlets to sweep the floor of bio-reactor tank, instead of the conventional scraper mechanisms. The principal advantage of this system is that it can continuously remove very small or light particles that settles completely within a short time. Once the particles have been floated to the surface, they can be moved into the pipe and collected in the settling tank by sequently aerated pressure. The experimental results shows that about 99.0% of the biochemical oxygen demand(BOD), 99.3% of the suspended solid(SS), 92.3% of the total nitrogen(T-N), 99.0% of the turbidity(TU), 100% of the total coliform(TC)and ammonia was respectively removed during aerobic digestion for 9 days. These result indicates that the CRS S plants are very effective for reduction and deodorization of swine wastewater contaminants, and the efflux from CRS S can either be discharged in the river or used as nutrient solution of formulation for plant growth factories. The developed CRSS plant proved to be flexible and it can simply be adapted to any type of biological waste treatment problem.roblem.

  • PDF

The design of an ejector type microbubble generator for aeration tanks

  • Lim, Ji-Young;Kim, Hyun-Sik;Park, Soo-Young;Kim, Jin-Han
    • Membrane and Water Treatment
    • /
    • 제10권4호
    • /
    • pp.307-311
    • /
    • 2019
  • The ejector type microbubble generator, which is the method to supply air to water by using cavitation in the nozzle, does not require any air supplier so it is an effective and economical. Also, the distribution of the size of bubbles is diverse. Especially, the size of bubbles is smaller than the bubbles from a conventional air diffuser and bigger than the bubbles from a pressurized dissolution type microbubble generator so it could be applied to the aeration tank for wastewater treatment. However, the performance of the ejector type microbubble generator was affected by hydraulic pressure and MLSS(Mixed Liquor Suspended Solid) concentration so many factors should be considered to apply the generator to aeration tank. Therefore, this study was performed to verify effects of hydraulic pressure and MLSS concentration on oxygen transfer of the ejector type microbubble generator. In the tests, the quantity of sucked air in the nozzle, dissolved oxygen(DO) concentration, oxygen uptake rate(OUR), oxygen transfer coefficient were measured and calculated by using experimental results. In case of the MLSS, the experiments were performed in the condition of MLSS concentration of 0, 2,000, 4,000, 8,000 mg/L. The hydraulic pressure was considered up to $2.0mH_2O$. In the results of experiments, oxygen transfer coefficient was decreased with the increase of MLSS concentration and hydraulic pressure due to the increased viscosity and density of wastewater and decreased air flow rate. Also, by using statistical analysis, when the ejector type microbubble generator was used to supply air to wasterwater, the model equation of DO concentration was suggested to predict DO concentration in wastewater.

Treatment of Saline Wastewater by the Activated Sludge with Nonwoven Fabric Separation

  • Moon, Byung-Hyun;Heo, Jong-Soo;Choi, Hyoung-Sub
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제2권2호
    • /
    • pp.136-140
    • /
    • 1997
  • Direct membrane separation using nonwoven fabric was applied to saline wastewater treatment by an activated sludge process. A nonwoven fabric module was immersed in an aeration tank. The part of treated was filtered through the module by suction and the rest of that was separated by a settling tank. Various F/M ratios and salt concentrations were applied to investigate stable flux as well as pollutant removal. The pollutant removal efficiencies of nonwoven fabric separation was not affected by F/M ratios and salt concentrations and was higher than that of settling tank separation. The decline in flux was seemed to be caused by the biofilm on nonwoven fabric surface.

  • PDF

탱크 교반형 생물반응기의 scale-up이 Eschscholtzia californica 세포생장 및 알칼로이드 생성에 미치는 영향 (Effects of Stireed Tank Bioreactor Scale-up on Cell Growth and Alkaloids Production in Cell Cultures of Eschscholtzia californica)

  • 유병삼;변상요
    • KSBB Journal
    • /
    • 제13권6호
    • /
    • pp.700-705
    • /
    • 1998
  • Studies were made to investigate effects of the scale-up of stirred tank bioreactors on cell growth and alkaloids production for suspension cultures of Eschscholtzia californica. In the 1.5 L STR, cell lysis was observed at 110 rpm or higher agitation speed. The agitation speed of 30 L STR was 43.7 rpm to maintain the same shear stress developed in 1.5 L STR of 100 rpm. As a result of scale-up from 1.5 L to 30 L STR, the specific growth rate was decreased from 0.12 to 0.07 day-1. The alkaloids productivity was also decreased from 0.24 to 0.14 mg/L-day. Changes of mixing performance and oxygen transfer were studied to explain the decrease of cell growth and alkaloids production. Decreased oxygen transfer rate coefficient(KLa) and increased mixing time by the scale-up was observed at various aeration rates.

  • PDF

하수처리수 재이용을 위하여 Sym-bio공정과 용존 오존 부상공정을 이용한 하수처리의 효율 분석 (A Treatment Efficiency of Wastewater by using Sym-Bio Process and Dissolved Ozone flotation Process for Water Reuse)

  • 박찬규;박재한;이경희;안윤희;고광백;정현철
    • 한국물환경학회지
    • /
    • 제24권1호
    • /
    • pp.86-90
    • /
    • 2008
  • Water reuse of effluent is limited, due to bacteria and chromaticity or turbidity which may result in low perception of water quality. Consequently, this study showed a method in the reuse of treated wastewater by a diversified treatment method, with separation of centralized reformation of aeration tank into pre-treatment with minimum installation of facilities, and post-treatment, applying advanced oxidation treatment. A pilot plant experiment was performed using Sym-Bio process adopting an NADH Sensor without modification of the exiting aeration tank. The Dissolved Ozone Flotation process, which is an advanced oxidation process, to treat the remaining organics, nutrients, chromaticity, turbidity and bacteria. As a result in the Sym-Bio process, the biological treatment, even on the condition of single stage reaction tank, the treatment efficiencies of BOD, $COD_{Mn}$, $COD_{Cr}$, SS and T-N were 96.6%, 84.6%, 88.25%, 95.1% and 71.0%, respectively, while that for T-P was 25.0%, which required further treatment. In the Dissolved Ozone Flotation process, the advanced oxidation treatment, the treatment efficiencies of BOD, $COD_{Mn}$, $COD_{Cr}$, SS, T-N, T-P, chromaticity, turbidity, bacteria, coliforms were 78.9%, 34.6%, 28.7%, 48.0%, 70.4%, 82.4%, 84.0%, 74.5%, 99.8% and 99.4%, respectively.

Influence of Agitation Intensity and Aeration Rate on Production of Antioxidative Exopolysaccharides from Submerged Mycelial Culture of Ganoderma resinaceum

  • Kim Hyun-Mi;Kim Sang-Woo;Hwang Hye-Jin;Park Moon-Ki;Mahmoud Yehia A.-G.;Choi Jang-Won;Yun Jong-Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권8호
    • /
    • pp.1240-1247
    • /
    • 2006
  • The present study investigated the influence of the aeration rate and agitation intensity on the production of the mycelial biomass and antioxidative exopolysaccharide (EPS) in Ganoderma resinaceum. In submerged cultures with varying agitation speeds and aeration rates in a stirred-tank reactor, the maximum mycelial biomass and maximum EPS concentration were achieved at 50 rpm and 300 rpm, respectively. Under varying aeration rates, the highest amount of mycelial biomass (18.1 g/l) was accumulated at the lowest aeration rate (0.5 vvm) and the maximum EPS production (3.0 g/l) obtained at 1.0 vvm. A compositional analysis revealed that the five different EPSs were protein-bound heteropolysaccharides, consisting of 87.17-89.22% carbohydrates and 10.78-12.83% proteins. The culture conditions had a striking affect on the carbohydrate composition of the EPS, resulting in different antioxidative activities. All the EPSs showed strong scavenging activities against superoxide and 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radicals, whereas no clear trend in antioxidative activity was observed against hydroxyl radicals and lipid peroxides. Although the precise reason for this difference is still unclear, the high glucose moiety of EPS is probably linked to its broad spectrum of antioxidative activity.

활성 슬러지조 폭기를 위한 에너지 절감형 판형 멤브레인 산기장치의 개발 (Development of Energy Saving Aeration Panel for Aerating in Activated Sludge System)

  • 김지태;탁현기;김종국
    • 대한환경공학회지
    • /
    • 제34권6호
    • /
    • pp.414-420
    • /
    • 2012
  • 에너지 절감형 산기장치의 상용화를 목적으로 국내 J사의 인장강도 $400kg_f/cm^2$ 이상, 두께가 0.5 mm의 폴리 우레탄 시트를 확보하고 고무 시트의 천공에 가장 널리 이용되는 방식인 needle을 이용한 천공방법을 택하여 기공의 크기가 $100{\mu}m$ 정도의 판형 멤브레인 산기장치를 제작하였다. 판형 산기 모듈 제작 후 실험실 및 파일롯 규모의 테스트 결과, 수조 450 L, 수온 $20^{\circ}C$, 공기량 40 L/min인 실험실 테스트에서 3분 내에 DO가 5 mg/L을 넘었고, 8분 내에 DO가 포화치에 가까운 8 mg/L 이상이 됨을 알 수 있었다. 이때의 $K_{La(15)}$$16.34hr^{-1}$, 표준산소전달효율은 54.7%, 표준폭기효율는 7.88 kg/kwh로 상당히 높은 효율의 실험결과를 보였다. 수조 2 $m^3$, 수온 $19^{\circ}C$, 공기량 30 L/min인 파이롯 규모의 테스트에서는 8분 내에 DO 농도가 5 mg/L를 넘었고, 이때의 $K_{La(15)}$$5.8hr^{-1}$, 표준산소전달효율은 42.1%, 표준폭기효율는 6.41 kg/kwh로 기존 산기관의 2~2.5배 높은 효율의 실험결과를 보였다. 특히 단위 동력당 산소전달률이 높아 경제성이 높음을 나타내었다. 기존 산기관의 적용에서 청수에서의 산소전달효율이 실제 폐수에서의 산소전달률의 차이로 인한 문제가 빈발하여 실제 $40^{\circ}C$ 축산폐수에서 테스트한 결과 $OTE_f$는 22.1% $OTE_{pw40}$이 39.6%로 매우 높은 효율을 보였다.

Effects of Dissolved Oxygen and Agitation on Production of Serratiopeptidase by Serratia Marcescens NRRL B-23112 in Stirred Tank Bioreactor and its Kinetic Modeling

  • Pansuriya, Ruchir C.;Singhal, Rekha S.
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권4호
    • /
    • pp.430-437
    • /
    • 2011
  • The effects of the agitation and aeration rates on the production of serratiopeptidase (SRP) in a 5-L fermentor (working volume 2-l) were systematically investigated using Serratia marcescens NRRL B-23112. The dissolved oxygen concentration, pH, biomass, SRP yield, and maltose utilization were all continuously measured during the course of the fermentation runs. The efficiencies of the aeration and agitation were evaluated based on the volumetric mass transfer coefficient ($K_La$). The maximum SRP production of 11,580 EU/ml with a specific SRP productivity of 78.8 EU/g/h was obtained with an agitation of 400 rpm and aeration of 0.075 vvm, which was 58% higher than the shake-flask level. The $K_La$ for the fermentation system supporting the maximum production (400 rpm, 0.075 vvm) was 11.3 $h^{-1}$. Under these fermentor optimized conditions, kinetic modeling was performed to understand the detailed course of the fermentation process. The resulting logistic and Luedeking-Piret models provided an effective description of the SRP fermentation, where the correlation coefficients for cell growth, SRP formation, and substrate consumption were 0.99, 0.94, and 0.84, respectively, revealing a good agreement between the model-predicted and experimental results. The kinetic analysis of the batch fermentation process for the production of SRP demonstrated the SRP production to be mixed growth associated.

Fed-Batch 실험장치(實驗裝置)를 이용한 질산화(窒酸化) 미생물(微生物)들의 최대(最大) 성장율(成長率)의 결정(決定)에 관한 실험적(實驗的) 연구(硏究) (Rapid Determination of the Maximum Specific Growth Rates of Nitrogen Oxidizing Bacteria by Fed-Batch Experiments)

  • 이병희
    • 상하수도학회지
    • /
    • 제10권3호
    • /
    • pp.55-63
    • /
    • 1996
  • Nitrification reaction consists of two reactions: nitritification which oxidizes ammonia nitrogen to nitrite nitrogen and nitratification which oxidizes nitrite nitrogen to nitrate nitrogen. Each reaction is carried out by Nitrosomonas and Nitrobacter, respectively. The effective maximum growth rates for both bacteria have to be determined to design aeration tank whenever the aeration tanks have to nitrify ammonia nitrogen in influent. And these values are very important to use mathematical models such as IAWPRC model to simulate nitrification in activated sludge. There are several methods to determine these valves, however, the Fed-Batch experiments can determine these values within 72 hours. In this study, the mathematical equations and experimental procedures for Fed-Batch test are presented. Also, the experimental data and reported values are compared. The estimated mean values of maximum specific growth rates for Nitrosomonas and Nitrobacter are $0.5010day^{-1}$ and $0.6704day^{-1}$, respectively.

  • PDF