• 제목/요약/키워드: Aeration Process

검색결과 348건 처리시간 0.026초

생물학적 질소.인 제거를 위한 SMMIAR(Submerged Moving Media Intermittent Aeration Reactor) 공정의 운전 특성 (The Operating Characteristics of SMMIAR process for Biological Nitrogen.phosphorus Removal)

  • 김홍태;김학석;김규창
    • 한국환경과학회지
    • /
    • 제12권1호
    • /
    • pp.55-61
    • /
    • 2003
  • This study was carried out to obtain the operating characteristics of SMMIAR process for biological nitrogenㆍphosphorus removal. SMMIAR was operated at HLR(Hydraulic loading rate) of 39.6, 52.8, 63.4 and 79.2 $\ell$/$m^2$/d respectively and the operating parameters such as intermittent aeration time ratio of aerobic/anoxic, DO and microorganism concentration were changed to confirm the optimum operating condition. The concentrations of the wastewater BOD, TN(Total nitrogen) and TP(Total phosphorus) were 150, 30 and 7.5mg/$\ell$ respectively. Achieving better removal efficiencies of BOD, TN and TP up to 90, 85.4 and 95.4% respectively, we must keep in operation condition of SMMIAR by 0.75 of time ratio of aerobic/anoxic and by minimum 45 minutes of oxic period simultaneously.

연속회분식반응조 공정에서 교반/폭기비와 SRT가 영양염류제거에 미치는 영향 (Effects of mixing/aeration ratio and SRT on nutrient removal in SBR process)

  • 전석준;김한수
    • 한국물환경학회지
    • /
    • 제18권3호
    • /
    • pp.291-301
    • /
    • 2002
  • In this study, nutrients treatment by sequencing batch reactors(SBR) was performed. Nitrogen and phosphorus removal efficiencies were evaluated by changing SRT and mixing/aeration ratio. Not only nitrogen but also phosphorus removal patterns were investigated through track studies on 1 cycle. As SRT was fixed and mixing/aeration ratio was changed, maximum nitrogen removal efficiency was 87.6% at mixing/aeration ratio 0.67. Phosphorus removal efficiencies were more than 85.5% except no mixing condition. As mixing/aeration ratio was fixed and SRT was changed, nitrogen removal efficiencies were 70.5~79.8%, which represented slight changes, while phosphorus removal efficiencies were 49.0~97.3%, which represented sharply decreasing tendency at less than 20 day. Both phosphorus release rate k and maximum phosphorus release rate $P_{max}/M$ were are decreased as SRT was decreased, but they were not affected by mixing/aeration ratio. It was found that there is a linear relationship between ortho-phosphate uptake and maximum ortho-phosphate release.

활성오니처리 장해의 규명과 그 제어에 관한 연구 (A Study on the Explanation of Activated Sludge Treatment Hindrance and its Control)

  • 최택열
    • 한국환경보건학회지
    • /
    • 제20권2호
    • /
    • pp.28-38
    • /
    • 1994
  • New problems have been recently posed on the abnormal foaming (Scum) in an aeration tank and the sludge flotation in a final sedimentation tank during the activated sludge process. However, the activities of the causing bacteria, Nocardia-amarae in an aeration tank have not been searched out at all. Therefore, in this article the activities of Nocardia-amarae in an aeration tank have been closely examined by means of the changes of (F/M) ratio, SRT and inflowing substrate using continuous type and fed-batch type. Summarized results of experiments are as follows. 1. Regrading continuous culture when synthetic wastewater was used substrate neither the increase in the number of Nocardia-amarae in the aeration tank nor the Occurrence of Scum was observed. 2. In the case of fed-batch culture, Nocardia-amarae in the aeration tank increased due to the partial change in substrate and the effect of SRT was significant. 3. Once the scum was formed and the quantity of added Nocardia-amarae and substrate were not changed, the effect of STR was not significant.

  • PDF

Composting Greenhouse using The Forced Aeration Method

  • Hong, Ji-Hyung;Park, Keum-Joo;Sohn, Bo-Kyoon
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1996년도 International Conference on Agricultural Machinery Engineering Proceedings
    • /
    • pp.685-691
    • /
    • 1996
  • Recent research in composting greenhouse has focused on some of the fundamental properties during the process such as temperature , carbon dioxide content and odors which change as the composting progresses. The composting greenhouse of cattle manure with rice hulls by a forced aeration method without turning is available for the practical proposition. The control of a predetermined temperature range(45-65$^{\circ}C$) is possible if intermittent aeration is used. The carbon dioxide concentration was maintained in the range from 400 to 2650 ppm by the intermittent aeration. The ammonia emission rose rapidly leading to a temperature increase of composting material up to more than 60$^{\circ}C$ for six days. Ammonia emission declined quickly and could hardly be detected after 10 days of running period.

  • PDF

하수처리를 위한 간헐 방류식 장기폭기 공정에서 아질산염의 축적에 영향을 미치는 인자 (Factors affecting nitrite build-up in an intermittently decanted extended aeration process for wastewater treatment)

  • 안규홍;박기영;이형집
    • 상하수도학회지
    • /
    • 제13권1호
    • /
    • pp.51-60
    • /
    • 1999
  • An intermittently-aerated, intermittently-decanted single-reactor process (KIDEA process : KIST intermittently decanted extended aeration process) was applied for nitrogen removal from wastewater. Synthetic wastewater with chemical oxygen demand (COD): nitrogen (N) ratio of approximately 5.25: 1 was used. The average COD removal efficiency reached above 95%, and under optimal conditions nitrogen removal efficiency also reached above 90%. This process consisted of 72 minute aeration, 48 minute settling and 24 minute effluent decanting with continuous feeding of influent wastewater from the bottom of the reactor, and did not require a separate anoxic mixing-phase. In this process, nitritation ($1^{st}$ step of nitrification) was induced but nitratation($2^{nd}$ step of nitrification) was suppressed. Main factors responsible for the accumulation of nitrite ion in the experimental condition were free ammonium and dissolved oxygen. This condition of nitrite build-up accelerated by continuous feed flow in the bottom of the KIDEA reactor because of high concentration of ammonia nitrogen in the influent. This research provides one of answers to control nitrate build-up.

  • PDF

Off-gas Column Test를 이용한 하수처리장 심층포기시스템의 산소전달 매개변수(α와 F)의 산정 (Evaluation of the Oxygen Transfer Parameters (α and F) of a Coarse Bubble Aeration System by Off-gas Column Test)

  • 김철웅;임세호;신동록;이지영;박재한;안윤희;고광백
    • 한국물환경학회지
    • /
    • 제22권6호
    • /
    • pp.1119-1122
    • /
    • 2006
  • Aeration by using diffusers usually requires approximately 50~90% of the total electricity needed to operate WWTP (WasteWater Treatment Plant)s. Accurate evaluation of the oxygen transfer efficiency for an aeration system, and recommendation of a better alternative may help saving WWTP operational costs. Appropriate techniques and methods to achieve this purpose have not been introduced in Korea. In this study, in-process analysis was performed for a coarse bubble aeration system by the off-gas method to evaluate its applicability in Korea. To accomplish this analysis, an off-gas test, unsteady-state clean water test and steady-state off-gas column test was conducted and comparisons to other aeration systems were made. The ${\alpha}$ and the F estimated from the results of the unsteady-state clean water test and the steady-state off-gas column test were 0.61 and 0.90 respectively in a coarse bubble aeration system. The comparison of P.E tube diffusers laid out single spiral roll and ceramic dome diffusers laid out full floor coverage showed that the oxygen transfer efficiency of the coarse bubble aeration system was less than or similar to other aeration systems. But, airflow rates per unit area were 4~5 times greater than other aeration systems. In regards to the oxygen transfer efficiency for airflow rates per unit area, a retrofit to higher efficiency diffusers was urgently needed. This study showed proved that off-gas methods can apply to evaluate diffuser performances to estimate operating factors and to compare other aeration systems in Korea.

순산소의 MBR(Membrane Bio Reactor) 공정 적용을 통한 음식물류 폐기물 혐기성소화 유출수 처리 평가 (Evaluation of pure oxygen with MBR(Membrane Bio Reactor) process for anaerobic digester effluent treatment from food waste)

  • 박세용;김문일;박성혁
    • 유기물자원화
    • /
    • 제29권3호
    • /
    • pp.5-16
    • /
    • 2021
  • 본 연구에서는 MBR 공정 내 폭기조에서 순산소 용해와 일반 공기 폭기의 효율에 대한 비교·평가를 통해 순산소의 MBR 공정 적용성에 대해 평가 하였다. 순산소 장치에 의한 유기물 및 암모니아 산화 여부에 대해 평가하였으며, 실폐수(음식물류 폐기물의 혐기성소화 유출수) 적용 과포화산소용해 효율 평가를 진행하였다. 순산소용해와 일반공기폭기 방법의 SCOD, 암모니아 제거율과 속도는 비슷하였다. 하지만, 순산소 용해에 의한 미생물 수율이 일반공기폭기법에 의한 미생물 수율보다 약 0.03 g MLSS-produced/g SCOD-removed 낮아 잉여슬러지 처리 비용이 감소될 수 있을 것이라 판단된다. 음식물류 폐기물의 혐기성 소화 유출수의 고농도 유기물 (4,000 mg/L) 및 암모니아 (1,400 mg/L)의 제거율을 순산소용해와 일반공기폭기법을 비교한 결과, 순산소 용해기가 일반공기폭기법에 비해 유기물 제거율이 약 13% 가량 더 높게 평가되었다. 또한, MLSS의 경우 일반공기폭기법이 순산소장치에 비해 0.3배가량 높았다. 이는, 순산소장치의 경우 폭기조 내에 용존산소가 충분히 유지, 공급되기 때문에 슬러지 자산화가 고도로 진행된 결과로 판단되었다. 따라서, 고농도 유기물을 함유한 폐수 처리를 위한 방법으로는 기존에 많이 사용되었던 일반공기폭기법보다 순산소장치를 활용하는 것이 경제적인 면에서 더 유리할 것으로 판단되었다.

효율적 퇴비화를 위한 온도제어 공기공급방식의 적용에 관한 연구 (A Study on the Application of Temperature Feedback Aeration Method for Composting of Municipal Solid Wastes)

  • 김병태;김정욱
    • 유기물자원화
    • /
    • 제2권1호
    • /
    • pp.3-18
    • /
    • 1994
  • 우리나라 도시고형폐기물은 퇴비화에 적합한 조건을 갖추고 있으나, 퇴비화 공정개발이 미약하여 폐기물 퇴비화를 실용화하지 못하고 있다. 폐기물 퇴비화의 실용화를 위하여는 최종퇴비의 질을 높이면서도 대량의 폐기물을 단기간에 처리할 수 있도록 공정제어를 하여야 한다. 이를 위하여 최적온도를 지속적으로 유지하도록 공기공급량을 제어하는 방식(온도제어 공기공급방식)이 있다. 본 연구에서는 우리나라 도시고형폐기물에 온도제어 공기공급방식을 적용하여 퇴비화 과정중의 공정효율과 최적온도를 분석하고자 하였다. 실험결과, 온도제어 공기공급방식이 일정공기공급방식에 비하여 짧은 기간에 분해효율과 건조효과가 높은 것으로 나타났다. 또한 우리나라 도시고형폐기물 퇴비화의 최적온도는 $50{\sim}54^{\circ}C$로 평가되었다.

  • PDF

공공하수처리시설에서 에너지 사용현황 및 절감방안 연구 (A Study on Energy Usage Monitoring and Saving Method in the Sewage Treatment Plant)

  • 김종락;이가희;유광태;김동윤;이호식
    • 한국물환경학회지
    • /
    • 제36권6호
    • /
    • pp.535-545
    • /
    • 2020
  • This study aims to conserve and monitor energy use in public sewage treatment plants by utilizing data from the SCADA system and by controlling the aeration rate required for maintaining effluent water quality. Power consumption in the sewage treatment process was predicted using the equipment's uptime, efficiency, and inherent power consumption. The predicted energy consumption was calibrated by measured data. Additionally, energy efficiency indicators were proposed based on statistical data for energy use, capacity, and effluent quality. In one case study, a sewage treatment plant operated via the SBR process used ~30% of energy consumed in maintaining the bioreactors and treated water tanks (included decanting pump and cleaning systems). Energy consumption analysis with the K-ECO Tool-kit was conducted for unit processing. The results showed that about 58.7% of total energy consumed was used in the preliminary and biological treatment rotating equipment such as the blower and pump. In addition, the energy consumption rate was higher to the order of 19.2% in the phosphorus removal process, 16.0% during sludge treatment, and 6.1% during disinfection and discharge. In terms of equipment energy usage, feeding and decanting pumps accounted for 40% of total energy consumed following 27% for blowers. By controlling the aeration rate based on the proposed feedback control system, the DO concentration was reduced by 56% compared pre-controls and the aeration amount decreased by 28%. The overall power consumption of the plant was reduced by 6% via aeration control.

암모니아 센서를 이용한 간헐폭기 Membrane bioreactor공정에서의 전력비 저감과 관형막을 이용한 슬러지 농축에 관한 연구 (A study on an intermittent aeration membrane bioreactor system using ammonia sensor to decrease energy consumption and sludge concentration by tubular membrane)

  • 강희석;이의종;김형수;장암
    • 상하수도학회지
    • /
    • 제28권2호
    • /
    • pp.161-170
    • /
    • 2014
  • It is essential to decrease energy consumption and excess sludge to economically operate sewage treatment plant. This becomes more important along with a ban on sea dumping and exhaustion of resource. Therefore, many researchers have been study on energy consumption reduction and strategies for minimization of excess sludge production from the activated sludge process. The aeration cost account for a high proportion of maintenance cost because sufficient air is necessary to keep nitrifying bacteria activity of which the oxygen affinity is inferior to that of heterotrophic bacteria. Also, additional costs are incurred to stabilize excess sludge and decrease the volume of sludge. There were anoxic, aerobic, membrane, deairation and concentration zone in this MBR process. Continuous aeration was provided to prevent membrane fouling in membrane zone and intermittent aeration was provided in aerobic zone through ammonia sensor. So, there was the minimum oxygen to remove $NH_4-N$ below limited quantity that could be eliminated in membrane zone. As the result of this control, energy consumption of aeration system declined by between 10.4 % and 19.1 %. Besides, we could maintain high MLSS concentration in concentration zone and this induced the microorganisms to be in starved condition. Consequentially, the amount of excess sludge decrease by about 15 %.