• 제목/요약/키워드: Aeration Process

검색결과 348건 처리시간 0.027초

OSA 공정을 이용한 하수슬러지 감량화 및 질소제거 가능성 평가 (Estimation of Sludge Reduction and Nitrogen Removal Possibility using OSA Process)

  • 주재영;윤수철;남덕현;박철휘
    • 상하수도학회지
    • /
    • 제22권5호
    • /
    • pp.497-503
    • /
    • 2008
  • The Oxic-Settling-Anaerobic(OSA) process is a modified activated sludge processes for sludge reduction. It is evaluated that the sludge production in OSA process can decrease to 88% because of biomass decay and kinetic parameter($Y_H$ 0.237mgVSS/mgCOD, $b_H$ $0.195d^{-1}$) in anaerobic reactor, when compared with CAS process. However, it has problems caused by sludge reduction such as increase of nutrient loading. In case that the anoxic condition through the introduction of the intermittent aeration for the enhancement of nitrogen removal ability build up and enough rbCOD is suppled, maximum 88% of nitrogen is removed in the OSA process. If the OSA process optimizing the intermittent aeration cycle is applied to the separate sewage system with high rbCOD fraction, it can be converted to advanced process in terms of the sludge reduction and nitrogen removal, simultaneously.

완전침지형 회전매체 생물막 공정에서 포기강도 조절이 동시 질산화/탈질 효율에 미치는 영향 (Effect of Aeration Intensity on Simultaneous Nitrification and Denitrification Efficiency in the Submerged Moving Media Biofilm Process)

  • 김준명;이상민;임경호;김일규;강호
    • 한국물환경학회지
    • /
    • 제24권3호
    • /
    • pp.273-279
    • /
    • 2008
  • Space separation method that use independent reactor for nitrification and other reactor for denitrification has been commonly used for biological nitrogen removal process like $A^2O$ process. However, this method needs large space and complicate pipelines and time separation method such as SBR process have a difficulty in continuous treatment. Thus biological nitrogen removal process which is capable of continuous treatment, easy opeation and space saving is urgently required. In this research, submerged moving media was used for a biofilm process and suspended sludge was used for biological nitrogen removal at the same time. In particular DO environment by controlling air flow rate was investigated for simultaneous nitrification/denitrification. Total nitrogen removal in aeration rate more than $67L/min{\cdot}m^3$ showed 51~53% and rose to 65%, 70% and 78% in $50L/min{\cdot}m^3$, $58L/min{\cdot}m^3$ and $25L/min{\cdot}m^3$ respectively. Total phosphorus removal was very low about 10~20% more than $67L/min{\cdot}m^3$ aeration rates. But total phosphorus removal roses when reduces aeration rate by $58L/min{\cdot}m^3$ low and it showed total phosphorus removal of 72% in aeration rate $25L/min{\cdot}m^3$.

점감포기에 의한 바실러스 특성을 이용한 폐수의 유기물질 및 질소, 인 처리에 관한 연구 (Removal of organic Carbon, Nitrogen and Phosphorus in Wastewater based on tapered Aeration with Bacillus sp.)

  • 김판수;이상호
    • 한국산학기술학회논문지
    • /
    • 제8권4호
    • /
    • pp.861-866
    • /
    • 2007
  • 본 연구는 하 폐수 중의 유기물뿐만 아니라 질소, 인을 생물학적으로 제거하기 위하여 Bacillus sp. 미생물을 사용하였다. Bacillus sp. 미생물이 생존하기에 알맞지 않은 상황에서는 포자를 형성하고, 증식과 포자화를 반복하면서 우점화되는 특성을 발현시키기 위해 점감포기를 실시하였다. 반응기 용존산소 농도는 포기조 1단; $1.2{\sim}l.5mg/L$, 포기조 2단; $0.3{\sim}$0.5mg/L, 포기조 3단 ; 0.2mg/L이하로 유지하였다. 또한 공정내 미생물의 유실을 방지하고 미생물이 고농도 상태로 유지 가능한 부착성장의 한 공법인 RBC에 끈상 나선형 미생물 접촉재를 설치한 반응기를 이용하였다. 식종한 Bacillus sp.가 적응하는 기간에서의 유입유량은 173 L/d, 내부반송율 200%, 슬러지반송율 100%로 운전을 하였으며, 방류수질을 기준으로 단계적으로 유입유량을 증가시켰다. 정상상태에서 유입유량은 346 L/d이고, 내부반송율과 슬러지 반송율은 각각 50%로 결정하여 실험을 수행하였고, 원수는 Glucose 1,800 mg/L. $NH_4Cl\;500mg/L,\;KH_2PO_4\;5mg/L$를 혼합한 인공폐수를 제조하여 공정에 주입하였고, 그 결과 각각 미생물이 폐수에 적응하는 단계인 Period 1에서는 각 수질 분석 항목의 농도가 점차적으로 감소하는 경향을 보였으며. 정상상태라고 판단한 Period 2에서는 최종적으로 유입수에 대한 유출수의 제거율은 각각 TCODCr 94%. BOD 87%, T-N 85%, T-P 89%의 결과를 나타내었다.

  • PDF

MBR 공정에서 간헐공기주입에 따른 겔층 제거 메커니즘 (Mechanism of Gel Layer Removal for Intermittent Aeration in the MBR Process)

  • 노수홍;최영근;권오성;박희성
    • 멤브레인
    • /
    • 제16권3호
    • /
    • pp.188-195
    • /
    • 2006
  • 본 연구의 목적은 침지형(YEF 750D-2) 모듈을 적용하여 공기유량에 따른 유체 유속과 간헐적인 세정공기의 공급에 의한 오염제거를 평가하는 것이다. 공기유량에 따라 모듈의 유체 유속은 선형적으로 증가하였으며, MLSS의 농도가 1,000 mg/L 증가할 때 마다 $3\times10^{-4}m{\cdot}min/sec{\cdot}L$의 비율로 유체 유속이 감소하였다. 세정공기의 공급이 정지되는 시간에 전여과가 일어나 흡인여과 시간 동안 겔층 위에 케익층이 형성되었다. 20초 정지와 20초 공기공급의 간헐공기주입으로 형성된 케익층이 역세정에 의하여 제거되면서 압력증가율이 가장 낮게 나타났다. 겔층이 제거되는 메커니즘은 세정 공기공급을 교대로 하여 겔층 위에 케익층을 형성시켜 케익층이 제거될 때 겔층이 함께 제거되는 원리로 설명할 수 있다.

침지식 중공사막을 결합한 Dynamic state 하수고도처리공정(KSMBR process)의 개발 및 현장적용평가 (Development and Field Application of the Advanced Wastewater Treatment process (KSMBR) by Hollow Fiber Submerged Membrane)

  • 김지연;서인석;김홍석;김연권;김병군;최창규;안효원;서완석;장문석
    • 한국물환경학회지
    • /
    • 제22권2호
    • /
    • pp.358-363
    • /
    • 2006
  • KSMBR process is dynamic state advanced wastewater treatment applied with Trisectional Aeration (TSA) mode combined with membrane. TSA was remodeled conventional intermittent aeration which was operated nonaeration-aeration. TSA operates nonaeration ($N_1$) - aeration (A) - nonaeration ($N_2$) in Trisectional Aeration Reactor (TAR). Organics of influent could be nearly consumed to denitrification without influence by remained DO in TAR and it could be operated about sludge return ratio of 1Q (influent base). The purpose of this study was to apply KSMBR to the full-scale plant and to evaluate efficiency of nitrogen and phosphorus removal and TSA operation. The result of this study, average CODcr/T-N and CODcr/T-P ratio were 7.8 and 59.6, respectively. BOD, TCODcr, SS, T-N, T-P, E-coli removal efficiency were 98.4, 95.2, 73.0, 69.6, 99.95 %, respectively. KSMBR obtained high removal efficiencies of C, N and P when it applied full-scale plant.

활성슬러지공정에서 구리의 거동에 관한 연구 (A Study on the Cu2+ Behavior in Activated Sludge Process)

  • 박진도;이학성
    • 한국환경과학회지
    • /
    • 제19권9호
    • /
    • pp.1119-1127
    • /
    • 2010
  • The behavior of copper throughout the whole process of wastewater treatment plant that uses the activated sludge process to treat the wastewater of petrochemical industry that contains low concentration of copper was investigated. Total inflow rate of wastewater that flows into the aeration tank was $697\;m^3$/day with 0.369 mg/L of copper concentration, that is, total copper influx was 257.2 g/day. The ranges of copper concentrations of the influent to the aeration tank and effluent from the one were 0.315 ~ 0.398 mg/L and 0.159 ~ 0.192 mg/L, respectively. The average removal rate of copper in the aeration tank was 50.8 %. The bioconcentration factor (BCF) of copper by microbes in the aeration tank was 3,320. The accumulated removal rate of copper throughout the activated sludge process was 71.3%, showing a high removal ratio by physical and chemical reactions in addition to biosorption by microbes. The concentration of copper in the solid dehydrated by filter press ranged from 74.8 mg/kg to 77.2 mg/kg and the concentration of copper by elution test of waste was 2.690 ~ 2.920 mg/L. It was judged that the copper concentration in dehydrated solid by bioconcentration could be managed with the control of that in the influent.

APID공정 내 동절기 개량형 간헐포기 운전모드 적용 및 개발 (Development and Application of Modified Intermittently Aeration mode for Advanced Phase Isolation Ditch (APID) process at Winter Season)

  • 곽성근;안상우;정무근;박재로;박재우
    • 한국물환경학회지
    • /
    • 제25권6호
    • /
    • pp.872-878
    • /
    • 2009
  • Advanced Phase Isolation Ditch (APID) process was studied to develop economic retrofitting technology, for the plants where retrofitting of common activated sludge process is required. In this study, to develop and apply the modified intermittently aeration mode as process control conditions for treating municipal wastewater, a demonstration plant was installed and operated in the existing sewage treatment plant of P city. During this study, the average effluent $BOD_5$, SS, T-N, and T-P concentrations were 6.3, 4.5, 10.0, and 1.3 mg/L. The modified mode decreased the nitrification capability more than the conventional mode in the application period. Nitrate in the anaerobic condition can have a negative effect on biological phosphorus removal. In the decreasing nitrate levels, the modified mode increased the biological ability of removal phosphorus more than the conventional mode in this study. Therefore, newly developed APID process with modified intermittent aeration mode can be one of the useful processes for stable organic matter and nutrients removal.

Experimental Studies on Acration in Water

  • Paik, Nam-Won;Chung, Kyou-Chull
    • 한국환경보건학회지
    • /
    • 제2권1호
    • /
    • pp.25-28
    • /
    • 1975
  • The main purpose of the aeration units in activated sludge process is to enable micro-organisms to metabolize the constituents of the waste effectively by supplying sufficient oxygen for their respiration. Normally, aeration is achieved by bringing the mixture of waste and sludge into intimate contact with air. The main type of aeration unit is diffused air unit in which air is injected into the liquid in the form of bubbles. The object of these laboratory studies is to compare the performance of three laboratory scale aeration systems at various depths of submergence, aerating water with and without the addition of a surface active agent.

  • PDF

침지형 생물막공법에 있어서 포기강도가 처리효율에 미치는 영향 (Effect of Aeration Intensity on the Treatment Efficiency in Submerged Biofilm Process)

  • 박종웅
    • 한국환경보건학회지
    • /
    • 제15권1호
    • /
    • pp.89-96
    • /
    • 1989
  • An aerated submerged biofilm reactor is the reactor in which influent organic substrates are aerobically oxidized by suspended biomass and attached biomass of biofilm grown on the surface of submerged media. The objective of this study was to investigate the effect of aeration intensity on microbial characteristics and treatment efficiency in submerged biofilm process. In the organic loading rate (4.3kg BOD/$m^{3} \cdot day$), biofilm thickness (420-780$\mu$m) and attached biomass(1.79-2.94mg/cm$^{2}$) increased as the aeration intensity increased (2-8m$^{3}$ air/$m^{2} \cdot hr$), but biofilm density decreased (42.25-37.69mg/cm$^{3}$). The minimum aeration intensity for prevention of deposited biomass was 2m$^{3}$ air/$m^{2} \cdot hr$. The minimum dissolved oxygen of 2.5mg/l had to be maintained for improved efficiency.

  • PDF

ORP와 pH 측정에 의한 간헐폭기 고도처리 공정 제어의 평가 (State Evaluation of Nutrient Removal in an Intermittent Aeration Process by Monitoring ORP & pH)

  • 고광백;서준석
    • 한국물환경학회지
    • /
    • 제18권4호
    • /
    • pp.401-409
    • /
    • 2002
  • In this study, to evaluate the applicability of ORP and pH as process control parameters for an intermittent aeration process, a 200L/d bench-scale plant was installed and operated for 90 days. It was fed with synthetic wastewater which contained $COD_{Cr}$ : 400mg/L, TN : 40mg/L and TP : 7mg/L. ORP & pH were measured on-line and compared with the variation of nutrient concentrations. As the results, both of the ORP and pH were able to monitor successfully nitrification and denitrification. Bending-points on the ORP curve and peak points on the pH curve corresponded to the termination of nitrification and denitrification. For P uptake and release, pH was the best indicator for performance evaluation. The aerobic pH apex was appeared when P uptake was accomplished and there was a relationship between the P release and pH variation. But the pH curve needed filtering because there were many noises on it. In this study, the shape of the ORP & pH curves were varied as the operating conditions such as aeration rates and organic loads were changed. It allowed the operating states of biological systems to be effectively evaluated. If it is properly managed to show the bending points and peak points clearly, the on-line monitoring of ORP & pH will be a reliable and effective technique for process control of intermittent aeration processes.