• 제목/요약/키워드: Adversarial Data Generation

검색결과 62건 처리시간 0.024초

Counterfactual image generation by disentangling data attributes with deep generative models

  • Jieon Lim;Weonyoung Joo
    • Communications for Statistical Applications and Methods
    • /
    • 제30권6호
    • /
    • pp.589-603
    • /
    • 2023
  • Deep generative models target to infer the underlying true data distribution, and it leads to a huge success in generating fake-but-realistic data. Regarding such a perspective, the data attributes can be a crucial factor in the data generation process since non-existent counterfactual samples can be generated by altering certain factors. For example, we can generate new portrait images by flipping the gender attribute or altering the hair color attributes. This paper proposes counterfactual disentangled variational autoencoder generative adversarial networks (CDVAE-GAN), specialized for data attribute level counterfactual data generation. The structure of the proposed CDVAE-GAN consists of variational autoencoders and generative adversarial networks. Specifically, we adopt a Gaussian variational autoencoder to extract low-dimensional disentangled data features and auxiliary Bernoulli latent variables to model the data attributes separately. Also, we utilize a generative adversarial network to generate data with high fidelity. By enjoying the benefits of the variational autoencoder with the additional Bernoulli latent variables and the generative adversarial network, the proposed CDVAE-GAN can control the data attributes, and it enables producing counterfactual data. Our experimental result on the CelebA dataset qualitatively shows that the generated samples from CDVAE-GAN are realistic. Also, the quantitative results support that the proposed model can produce data that can deceive other machine learning classifiers with the altered data attributes.

국방용 합성이미지 데이터셋 생성을 위한 대립훈련신경망 기술 적용 연구 (Synthetic Image Dataset Generation for Defense using Generative Adversarial Networks)

  • 양훈민
    • 한국군사과학기술학회지
    • /
    • 제22권1호
    • /
    • pp.49-59
    • /
    • 2019
  • Generative adversarial networks(GANs) have received great attention in the machine learning field for their capacity to model high-dimensional and complex data distribution implicitly and generate new data samples from the model distribution. This paper investigates the model training methodology, architecture, and various applications of generative adversarial networks. Experimental evaluation is also conducted for generating synthetic image dataset for defense using two types of GANs. The first one is for military image generation utilizing the deep convolutional generative adversarial networks(DCGAN). The other is for visible-to-infrared image translation utilizing the cycle-consistent generative adversarial networks(CycleGAN). Each model can yield a great diversity of high-fidelity synthetic images compared to training ones. This result opens up the possibility of using inexpensive synthetic images for training neural networks while avoiding the enormous expense of collecting large amounts of hand-annotated real dataset.

감쇠 요소가 적용된 데이터 어그멘테이션을 이용한 대체 모델 학습과 적대적 데이터 생성 방법 (A Substitute Model Learning Method Using Data Augmentation with a Decay Factor and Adversarial Data Generation Using Substitute Model)

  • 민정기;문종섭
    • 정보보호학회논문지
    • /
    • 제29권6호
    • /
    • pp.1383-1392
    • /
    • 2019
  • 적대적 공격은 기계학습 분류 모델의 오분류를 유도하는 적대적 데이터를 생성하는 공격으로, 실생활에 적용된 분류 모델에 혼란을 야기하여 심각한 피해를 발생시킬 수 있다. 이러한 적대적 공격 중 블랙박스 방식의 공격은, 대상 모델과 유사한 대체 모델을 학습시켜 대체 모델을 이용해 적대적 데이터를 생성하는 공격 방식이다. 이 때 사용되는 야코비 행렬 기반의 데이터 어그멘테이션 기법은 합성되는 데이터의 왜곡이 심해진다는 단점이 있다. 본 논문은 기존의 데이터 어그멘테이션 방식에 존재하는 단점을 보완하기 위해 감쇠 요소를 추가한 데이터 어그멘테이션을 사용하여 대체 모델을 학습시키고, 이를 이용해 적대적 데이터를 생성하는 방안을 제안한다. 실험을 통해, 기존의 연구 결과보다 공격 성공률이 최대 8.5% 가량 높음을 입증하였다.

A Positioning DB Generation Algorithm Applying Generative Adversarial Learning Method of Wireless Communication Signals

  • Ji, Myungin;Jeon, Juil;Cho, Youngsu
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제9권3호
    • /
    • pp.151-156
    • /
    • 2020
  • A technology for calculating the position of a device is very important for users who receive positioning services, regardless of various indoor/outdoor or with/without any positioning infrastructure existence environments. One of the positioning resources widely used at present, LTE, is a typical infrastructure that can overcome the space limitation, however its positioning method based on the position of the LTE base station has low accuracy. A method of constructing a radio wave map of an LTE signal has been proposed as a method for overcoming the accuracy, but it takes a lot of time and cost to perform high-density collection in a wide area. In this paper, we describe a method of creating a high-density DB for the entire region by using vehicle-based partial collection data. To create a positioning database, we applied the idea of Generative Adversarial Network (GAN), which has recently been in the spotlight in the field of deep learning, and learned the collected data. Then, a virtually generated map which having the smallest error from the actual data is selected as the optimum DB. We verified the effectiveness of the positioning DB generation algorithm using the positioning data obtained from un-collected area.

시계열 생성적 적대 신경망을 이용한 비행체 궤적 합성 데이터 생성 및 비행체 궤적 예측에서의 활용에 관한 연구 (A Study on Synthetic Flight Vehicle Trajectory Data Generation Using Time-series Generative Adversarial Network and Its Application to Trajectory Prediction of Flight Vehicles)

  • 박인희;이창진;정찬호
    • 전기전자학회논문지
    • /
    • 제25권4호
    • /
    • pp.766-769
    • /
    • 2021
  • 딥러닝을 포함한 머신러닝 기법을 기반으로 비행체의 궤적 설계, 제어, 최적화, 예측 등의 작업을 수행하기 위해서는 일정한 양 이상의 비행체 궤적 데이터를 필요로 한다. 그러나 다양한 이유(예를 들어 비행체 궤적 데이터셋 구축에 필요한 비용, 시간, 인력 등)로 일정한 양 이상의 비행체 궤적 데이터를 확보하기 어려운 경우가 존재한다. 이러한 경우 합성 데이터 생성이 머신러닝을 가능하게 하는 방법 중 하나가 될 수 있다. 본 논문에서는 이와 같은 가능성을 탐구하기 위하여 시계열 생성적 적대 신경망을 이용하여 비행체 궤적 합성 데이터를 생성하고 평가하였다. 또한 비행체의 상태를 인식하기 위한 비행체 궤적 예측 작업에서 합성 데이터의 활용 가능성을 탐구하기 위하여 다양한 ablation study(비교 실험)를 수행하였다. 본 논문에서 제시된 생성 평가 및 비교 실험 결과는 비행체 궤적 합성 데이터 생성 및 비행체 궤적 관련 작업에서 합성 데이터의 활용 가능성에 대한 연구를 수행하고자 하는 연구자들에게 실질적인 도움이 될 것으로 예상한다.

생성적 적대 신경망(GAN)을 이용한 한국어 문서에서의 문맥의존 철자오류 교정 (Context-Sensitive Spelling Error Correction Techniques in Korean Documents using Generative Adversarial Network)

  • 이정훈;권혁철
    • 한국멀티미디어학회논문지
    • /
    • 제24권10호
    • /
    • pp.1391-1402
    • /
    • 2021
  • This paper focuses use context-sensitive spelling error correction using generative adversarial network. Generative adversarial network[1] are attracting attention as they solve data generation problems that have been a challenge in the field of deep learning. In this paper, sentences are generated using word embedding information and reflected in word distribution representation. We experiment with DCGAN[2] used for the stability of learning in the existing image processing and D2GAN[3] with double discriminator. In this paper, we experimented with how the composition of generative adversarial networks and the change of learning corpus influence the context-sensitive spelling error correction In the experiment, we correction the generated word embedding information and compare the performance with the actual word embedding information.

Generation of contrast enhanced computed tomography image using deep learning network

  • Woo, Sang-Keun
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권3호
    • /
    • pp.41-47
    • /
    • 2019
  • In this paper, we propose a application of conditional generative adversarial network (cGAN) for generation of contrast enhanced computed tomography (CT) image. Two types of CT data which were the enhanced and non-enhanced were used and applied by the histogram equalization for adjusting image intensities. In order to validate the generation of contrast enhanced CT data, the structural similarity index measurement (SSIM) was performed. Prepared generated contrast CT data were analyzed the statistical analysis using paired sample t-test. In order to apply the optimized algorithm for the lymph node cancer, they were calculated by short to long axis ratio (S/L) method. In the case of the model trained with CT data and their histogram equalized SSIM were $0.905{\pm}0.048$ and $0.908{\pm}0.047$. The tumor S/L of generated contrast enhanced CT data were validated similar to the ground truth when they were compared to scanned contrast enhanced CT data. It is expected that advantages of Generated contrast enhanced CT data based on deep learning are a cost-effective and less radiation exposure as well as further anatomical information with non-enhanced CT data.

Generative Adversarial Networks를 이용한 Face Morphing 기법 연구 (Face Morphing Using Generative Adversarial Networks)

  • 한윤;김형중
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권3호
    • /
    • pp.435-443
    • /
    • 2018
  • 최근 컴퓨팅 파워의 폭발적인 발전으로 컴퓨팅의 한계 라는 장벽이 사라지면서 딥러닝 이라는 이름 하에 순환 신경망(RNN), 합성곱 신경망(CNN) 등 다양한 모델들이 제안되어 컴퓨터 비젼(Computer Vision)의 수많은 난제들을 풀어나가고 있다. 2014년 발표된 대립쌍 모델(Generative Adversarial Network)은 비지도 학습에서도 컴퓨터 비젼의 문제들을 충분히 풀어나갈 수 있음을 보였고, 학습된 생성기를 활용하여 생성의 영역까지도 연구가 가능하게 하였다. GAN은 여러 가지 모델들과 결합하여 다양한 형태로 발전되고 있다. 기계학습에는 데이터 수집의 어려움이 있다. 너무 방대하면 노이즈를 제거를 통한 효과적인 데이터셋의 정제가 어렵고, 너무 작으면 작은 차이도 큰 노이즈가 되어 학습이 쉽지 않다. 본 논문에서는 GAN 모델에 영상 프레임 내의 얼굴 영역 추출을 위한 deep CNN 모델을 전처리 필터로 적용하여 두 사람의 제한된 수집데이터로 안정적으로 학습하여 다양한 표정의 합성 이미지를 만들어 낼 수 있는 방법을 제시하였다.

A Novel Broadband Channel Estimation Technique Based on Dual-Module QGAN

  • Li Ting;Zhang Jinbiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권5호
    • /
    • pp.1369-1389
    • /
    • 2024
  • In the era of 6G, the rapid increase in communication data volume poses higher demands on traditional channel estimation techniques and those based on deep learning, especially when processing large-scale data as their computational load and real-time performance often fail to meet practical requirements. To overcome this bottleneck, this paper introduces quantum computing techniques, exploring for the first time the application of Quantum Generative Adversarial Networks (QGAN) to broadband channel estimation challenges. Although generative adversarial technology has been applied to channel estimation, obtaining instantaneous channel information remains a significant challenge. To address the issue of instantaneous channel estimation, this paper proposes an innovative QGAN with a dual-module design in the generator. The adversarial loss function and the Mean Squared Error (MSE) loss function are separately applied for the parameter updates of these two modules, facilitating the learning of statistical channel information and the generation of instantaneous channel details. Experimental results demonstrate the efficiency and accuracy of the proposed dual-module QGAN technique in channel estimation on the Pennylane quantum computing simulation platform. This research opens a new direction for physical layer techniques in wireless communication and offers expanded possibilities for the future development of wireless communication technologies.

GAN을 이용한 슬로싱 충격압력 데이터 생성 방법 연구 (A Study on Generation Method of Sloshing Impact Pressure Data Using Generative Adversarial Networks)

  • 강보경;오상진;이상범;정준형;신성철
    • 한국산업융합학회 논문집
    • /
    • 제26권1호
    • /
    • pp.35-46
    • /
    • 2023
  • A model test is performed to measure the sloshing impact pressure in the liquid tank. A preprocessing is performed to learn the model test results applied with various environmental conditions. In this study, we propose a method for generating data similar to the total pressure data using Generative Adversarial Networks. In addition, after approximating the generated result to the three parameter Weibull distribution, the difference of the three parameters was compared through the RMSE and SMAPE calculation results. As a result, the distribution of the generated data showed similar results to the total pressure data distribution.