• Title/Summary/Keyword: Adversarial Attack

Search Result 62, Processing Time 0.019 seconds

Traffic Data Generation Technique for Improving Network Attack Detection Using Deep Learning (네트워크 공격 탐지 성능향상을 위한 딥러닝을 이용한 트래픽 데이터 생성 연구)

  • Lee, Wooho;Hahm, Jaegyoon;Jung, Hyun Mi;Jeong, Kimoon
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.11
    • /
    • pp.1-7
    • /
    • 2019
  • Recently, various approaches to detect network attacks using machine learning have been studied and are being applied to detect new attacks and to increase precision. However, the machine learning method is dependent on feature extraction and takes a long time and complexity. It also has limitation of performace due to learning data imbalance. In this study, we propose a method to solve the degradation of classification performance due to imbalance of learning data among the limit points of detection system. To do this, we generate data using Generative Adversarial Networks (GANs) and propose a classification method using Convolutional Neural Networks (CNNs). Through this approach, we can confirm that the accuracy is improved when applied to the NSL-KDD and UNSW-NB15 datasets.

A Study on the Development of Adversarial Simulator for Network Vulnerability Analysis Based on Reinforcement Learning (강화학습 기반 네트워크 취약점 분석을 위한 적대적 시뮬레이터 개발 연구)

  • Jeongyoon Kim; Jongyoul Park;Sang Ho Oh
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.1
    • /
    • pp.21-29
    • /
    • 2024
  • With the development of ICT and network, security management of IT infrastructure that has grown in size is becoming very difficult. Many companies and public institutions are having difficulty managing system and network security. In addition, as the complexity of hardware and software grows, it is becoming almost impossible for a person to manage all security. Therefore, AI is essential for network security management. However, since it is very dangerous to operate an attack model in a real network environment, cybersecurity emulation research was conducted through reinforcement learning by implementing a real-life network environment. To this end, this study applied reinforcement learning to the network environment, and as the learning progressed, the agent accurately identified the vulnerability of the network. When a network vulnerability is detected through AI, automated customized response becomes possible.