• Title/Summary/Keyword: Advection-Diffusion

Search Result 138, Processing Time 0.035 seconds

Numerical Modelling of the Adjustment Processes of Minning Pit in the Dredged Channels (수치모의를 이용한 준설하천의 웅덩이 적응에 관한 연구)

  • Jang, Chang-Lae
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.10
    • /
    • pp.921-932
    • /
    • 2010
  • In this study, the adjustment processes of the disturbed channels by sand or gravel mining were investigated by a two dimensional numerical model in the generalized coordinate system. As a numerical scheme, the CIP (cubic interpolated pseudoparticle method) method was used to calculate the advection term in the flow field and central difference method was used to the diffusion term in it. The pit of the channel was partially filled with sediment at the toe of the pit upstream. As time increased, the headcut erosion upstream in the pit was decreased due to the sediment inflow. The almost inflow sediment upstream was trapped into the pit and the sediment deposit wedge migrated downstream in the pit with the steep submerged angle of repose. The numerical model was reproduced well the evolution processes of the channel. The mining pit migrated with speed as the channel was steep, and the numerical results were in overall agreement with the experimental results.

Development of 2-D Water Quality Management Model by Using Reliability Analysis (신뢰도 해석기법을 이용한 2차원 수질관리모형의 개발)

  • Kim, Sang-Ho;Han, Kun-Yeun;Kim, Won;Choi, Hung-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.5
    • /
    • pp.463-474
    • /
    • 2002
  • A two-dimensional water quality management model, Unsteady/Uncertainty Water Quality Model(UUWQM), is developed for a hydrodynamic analysis, an advection-diffusion analysis, and a reliability analysis by using uncertainty technique. The model is applied to the 35 km reach of Sungju to Hyunpoong in the midstream of Nakdong River. 2-D hydrodynamic and water quality analyses are peformed in this reach. Important input variables are decided by sensitivity analysis and verified by Monte Carlo method. Frequency distributions of water quality concentrations are computed from MFOSM method and Monte Carlo method at several locations in this study area. A water quality management system is constructed by calculating the violation probabilities of existing water quality standards.

Rates of Sediment Accumulation and Particle Mixing in the KODOS Site of the Clarion-Clipperton Fracture Zones (클라리온-클리퍼톤 KODOS 지역 퇴적물의 퇴적율과 입자혼합율)

  • MOON, DEOK SOO;KIM, KEE HYUN
    • 한국해양학회지
    • /
    • v.30 no.4
    • /
    • pp.288-301
    • /
    • 1995
  • Rates of the sedimentation and particle mixing have been estimated by applying uranium-series disequilibrium techniques to three sediment cores collected from the korea Deep Ocean Study (KODOS) site between the clarion and Clipperton Fracture Zones (CCFZ) of the Equatorial Pacific. Sedimentation rates based on the profiles of excess /SUP 230/Th activity and /SUP 230/ Th/SUB xs//SUP 232/ Th activity ratios at the southeastern part of the study area were estimated to be in the order of a few millimeters per thousand year, while at the northwestern part a factor of ten lower. Excess activities of /SUP 230/Th and /SUP 230/Th ratios showed intervals of constant values in the upper part of the sediment cores, probably generated by biological particle mixing. A "two-box" advection-diffusion steady state mixing model was employed in order to estimate particle mixing rates in the upper and the lower layers, based on the distribution profiles of excess /SUP 210/Pb activities. Particle mixing coefficients were estimated to be in the order of 10$^1$ cm$^2$/y in the upper layer and 10/SUP -1/-10/SUP 0/ cm$^2$/y in the lower layer.

  • PDF

Spatial and Temporal Aspects of Phytoplankton Blooms in Complex Ecosystems Off the Korean Coast from Satellite Ocean Color Observations

  • Ahn, Yu-Hwan;Shanmugam, Palanisamy;Chang, Kyung-Il;Moon, Jeong-Eon;Ryu, Joo-Hyung
    • Ocean Science Journal
    • /
    • v.40 no.2
    • /
    • pp.67-78
    • /
    • 2005
  • Complex physical, chemical and biological interactions off the Korean coast created several striking patterns in the phytoplankton blooms, which became conspicuous during the measurements of ocean color from space. This study concentrated on analyzing the spatial and temporal aspects of phytoplankton chlorophyll variability in these areas using an integrated dataset from a Sea-viewing Wide Field-of-view Sensor (SeaWiFS), Advanced Very High Resolution (AVHRR) sensor, and Conductivity Temperature Depth (CTD) sensor. The results showed that chlorophyll concentrations were elevated in coastal and open ocean regions, with strong summer and fall blooms, which appeared to spread out in most of the enclosed bays and neighboring waters due to certain oceanographic processes. The chlorophyll concentration was observed to range between 3 and $54\;mg\;m^{-3}$ inside Jin-hae Bay and adjacent coastal bays and 0.5 and $8\;mg\;m^{-3}$ in the southeast sea offshore waters, this gradual decrease towards oceanic waters suggested physical transports of phytoplankton blooms from the shallow shelves to slope waters through the influence of the Tsushima Warm Current (TWC) along the Tsushima Strait. Horizontal distribution of potential temperature $(\theta)$ and salinity (S) of water off the southeastern coast exhibited cold and low saline surface water $(\theta and warm and high saline subsurface water $({\theta}>12^{\circ}C; S>34.4)$ at 75dBar, corroborating TWC intrusion along the Tsushima Strait. An eastward branch of this current was called the East Korean Warm Current (EKWC), tracked with the help of CTD data and satellite-derived sea surface temperature, which often influenced the dynamics of mesoscale anticyclonic eddy fields off the Korean east coast during the summer season. The process of such mesoscale anticyclonic eddy features might have produced interior upwelling that could have shoaled and steepened the nutricline, enhancing phytoplankton population by advection or diffusion of nutrients in the vicinity of Ulleungdo in the East Sea.

Analysis of Characteristics of Cohesive Sediment Settling (점착성 퇴적물의 침전 특성 분석)

  • Kim, Jong-Woo;Yoon, Sei-Eui;Lee, Jong-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.2
    • /
    • pp.133-142
    • /
    • 2005
  • The settling concentration of fine suspended solid particles(alumina(Al$_2$O$_3$) and quartz(SiO$_2$)) is investigated with the physico-chemical effects(initial concentration, pH and NaCl). Laboratory tests have confirmed the significant influence of increasing initial concentration and salinity which can lead to flocculation due to the intermolecular attraction. Furthermore, the influence of the pH value on the concentration-time corves of alumina has been on firmed. Besides a numerical model to predict the behaviour of cohesive deposit under still water is analyzed by solving the unsteady one-dimensional diffusion-advection equation with a explicit, implicit, Crank-Nicolson and finite difference scheme. The model predicts the existence of an equilibrium concentration. Application of the model with implicit centered difference to data from settling experiments shows a similar distribution.

Experimental Study of Flow and Pollutant Dispersion in Meandering Channel (사행수로에서의 흐름 및 오염물질 혼합에 관한 실험적 연구)

  • Park, Sung-Won;Seo, Il-Won;Lee, Kyu-Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.883-888
    • /
    • 2007
  • 일반적인 하천의 흐름방향으로 발생하는 주흐름(primary flow)에 중첩하여 주흐름 방향의 수직단면에 이차류(secondary flow)가 발생하게 되며 이러한 이차류의 발달은 투입된 오염물질의 횡혼합을 증대시킨다. 오염물질의 혼합은 이송(advection)과 확산(diffusion) 또는 분산(dispersion)의 과정으로 설명되며 본 연구에서는 수로전체의 혼합과정을 설명하기 위해서 이송 확산 방정식을 적용하였다. 본 연구에서는 실험수조를 $150^{\circ}$의 중심각을 갖는 S자 형태의 만곡수로를 제작하여 유량조건은 15, 30, $60\;{\ell}l/sec$의 세 가지 경우로, 수심은 15, 20, 30, 40 cm의 경우로 총 12 케이스의 실험을 수행하였다. 유속장의 측정은 Sontek사의 3차원 micro-ADV(Acoustic Doppler Velocimeter)를 이용하였다. 오염물질 확산실험은 소금물 용액에 주변수와의 밀도차를 없애기 위해서 메탄올 용액을 첨가하여 추적자로 이용하여 농도장의 분석을 일본 KENEK사의 전기전도도계(conductivity meter)와 Gartner사의 DAS(data acquisition system)를 이용하여 횡방향 유속장의 분포와 오염운의 거동을 비교하여 다음과 같은 결론을 얻게 되었다. 주 흐름은 직선구간에서는 중앙에서 최대 유속을 나타내며, 좌우대칭적인 유속분포의 모습을 보이고, 만곡부에서는 수로안쪽을 따라 최대유속이 발생하였다. 수로의 직선구간에서는 최대유속이 발생하는 즉, 중앙에서의 오염물질의 분산이 가장 활발하게 이뤄졌으며 농도의 퍼짐형상인 오염운 역시 만곡부에서는 수로만곡부의 안쪽을 따라 확산 이동함을 알 수 있었다. 만곡부 외측에서는 오염물질의 정체현상이 일시적으로 발생하며, 유속구조의 횡방향 비대칭구조로 인한 종 횡방향의 분리현상이 발생하고, 오염운의 중첩현상이 종방향으로 연속되게 나타난다. 향후 수심방향 거동을 포함한 3차원적 분석이 요구되며 이 연구결과는 2차원적 수치해석의 적용 및 분석 자료로써 이용이 가능하다.

  • PDF

Numerical Model for Predicting Sand Bar Formation around River Mouth (하구역의 사주 형성 예측을 위한 수치 모델)

  • Kuroiwa, Masamitsu;Matsubara, Yuhei;Suzuki, Yoko;Kuchiishi, Takayuki
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.2
    • /
    • pp.96-102
    • /
    • 2014
  • A three-dimensional beach evolution model was presented to predict morphodynamics around a river mouth. The presented model was based on the depth-averaged (2DH) and quasi three-dimensional (Q-3D) nearshore current modules, and the model took into account shoreline changes, the effect of advection diffusion of suspended load and discharged sediments from the river. First, the 3D beach evolution model was applied to the formation of sand spits and terrace at the river mouth in order to investigate the performance of the model. Secondly, the model was applied to the river mouth at the Ara River, facing the Sea of Japan. The formation of sand spit at the Ara River in winter season was reproduced. The computed result showed qualitatively agreement with field site observation.

Development of Grid Reconstruction Method to Simulate Drying/Wetting in Natural Rivers (II): Model Application and Comparison (자연하천에서 마름/젖음 처리를 위한 격자재구성 기법의 개발 (II): 모형의 적용 및 비교.검토)

  • Choi, Seung-Yong;Kim, Sang-Ho;Hwang, Jae-Hong;Han, Kun-Yeun
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.11
    • /
    • pp.989-1004
    • /
    • 2009
  • The objective of this study is to examine validation of Grid Reconstruction Method, which is developed to simulate drying/wetting in complex natural rivers with wetting and drying domain areas. To verify application of the developed model, the model was applied to natural rivers with wetting and drying domain areas such as Han river and Nakdong river. The simulation results have shown good agreements with observed data and the results for the developed model were more accurate and improved stability of numerical computation than those of RMA-2 model. If the analysis of contaminant advection-diffusion and sediment transport are performed with the study results, the results can be effectively applied to river flow analysis and ecological hydraulics.

Influence of EDZ on the Safety of a Potential HLW Repository

  • Hwang Yong-Soo;Kang Chul-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.4
    • /
    • pp.253-262
    • /
    • 2004
  • Construction of tunnels in a deep crystalline host rock for a potential High-Level Radioactive Waste(HLW) repository inevitably generates an excavation disturbed zone (EDZ). There have been a series of debates on whether a permeability in an EDZ increases or not and what would be the maximum depth of an EDZ. Recent studies show mixed opinions on permeability. However, there has been an international consensus on the thickness of an EDZ; 30 cm for TBM and 1 meter for controlled blast. One of the impacts of an EDZ is on determining the distance between adjacent deposition holes. The void gap by the excavation hinders relaxation of temperature profiles so that the current Korean reference designing distance between holes should be stretched out more to keep the maximum temperature in a buffer region below 100 degrees Celsius. The other impact of an EDZ is on the long-term post closure radiological safety. To estimate the impact, the reference scenario, the well scenario, is chosen. Released nuclides diffuse through a bentonite buffer region experiencing strong sorption and reach a fracture surrounded by a porous medium. Inside a fractured porous region, radionuclides migrate by advection and dispersion with matrix diffusion into a porous medium. Finally, they reach a well assumed to be a source of potable water for local residents. The annual individual dose is assessed on this well scenario to find out the significance of an EDZ. A profound sensitivity study was performed, but all results show that the impact is negligible. Even though the role of an EDZ turns out to be limited on overall safety assessment, still it is worthwhile to study the chemical role of an EDZ, such as a potential source for natural colloids, potential sealing of an open fracture by fine clay particles generated by the process of an EDZ, and alteration of a sorption mechanism by an EDZ in the future.

  • PDF

A Review on the Photochemical Oxidant Modeling as Applied to Air Quality Studies in Complex Terrain

  • Lee Hwa-Woon;Kim Yoo-Keun;Won Gyeong-Mee;Park Jong-Kil
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.1 no.1
    • /
    • pp.19-33
    • /
    • 1997
  • The high oxidants, which occur the daily maximum concentrations in the afternoon, are transported into the other region via long range transport mechanisms or trapped within the shallow mixing boundary layer and then removed physically (deposition, transport by mountain wind, etc.) and chemically (reaction with local sources). Therefore, modeling formation of photochemical oxidants requires a complex description of both chemical and meteorological processes. In this study, as a part of air quality studies, we reviewed various aspects of photochemical modeling on the basis of currently available literature. The result of the review shows that the model is based on a set of coupled continuity equations describing advection, diffusion, transport, deposition, chemistry, emission. Also photochemical oxidant models require a large amount of input data concerned with all aspects of the ozone life cycle. First, emission inventories of hydrocarbon and nitrogen oxides, with appropriate spatial and temporal resolution. Second, chemical and photochemical data allowing the quantitative description of the formation of ozone and other photochemically-generated secondary pollutants. Third, dry deposition mechanisms particularly for ozone, PAN and hydrogen peroxide to account for their removal by absorption on the ground, crops, natural vegetation, man-made and water surfaces. Finally, meteorological data describing the transport of primary pollutants away from their sources and of secondary pollutants towards the sensitive receptors where environmental damage may occur. In order to improve our present study, shortcomings and limitation of existing models are pointed out and verification process through observation is emphasized.

  • PDF