• 제목/요약/키워드: Advection heat

검색결과 60건 처리시간 0.033초

아시아 季節風과 쿠로시오가 黃海, 東海 및 東支那海의 表面水溫에 미치는 影響 (Infouences of the Asian Monsoon and the Kuroshio on the Sea Surface Temperatures in the Yellow, the Japan and the East China Seas)

  • 강옥균
    • 한국해양학회지
    • /
    • 제20권2호
    • /
    • pp.1-9
    • /
    • 1985
  • 아시아 계절풍과 쿠로시오에 의한 계절적인 열수송이 황해, 동해 및 동지나해 의 표면수온 연변화에 미치는 영향을 이해하기 위하여 해면수온의 변화에 대한 간 단한 해석적 모델을 만들었다. 상기 해역에서 아시아 계절풍에 의한 열수송의 연변 화는 태양복사에너지의 연변화와 위상이 거의 일치하지만, 쿠로시오에 의한 열수송 은 복사에너지와 위상이 거의 정반대이다. 아시아 계절풍에 의한 계절적 열수송의 영향을 많이 받는 황해에서 표면수온의 연평균은 같은 위도의 동해에 비하여 낮으 며, 여름과 겨울의 표면수온차는 2$0^{\circ}C$이상으로서 세계전해양 중에서 가장 연교차폭 이 크다. 동해북서부 해역도 역시 아시아 계절풍과 한류에 의한 열이송의 효과가 합세함으로 인하여 표면수온의 연교차가 크다 그러나 쿠로시오와 쓰시마난류 해역 에서는 해류에 의한 열이송으로 인하여 표면수온의 연평균은 높으나 연교차폭은 작 다.

2016년 1월 23일 제주도에 일어난 국지규모 폭설의 원인과 특징에 관한 사례 연구 (A Case Study on Causes and Characteristics of the Local Snowstorm in Jeju Island During 23 January 2016)

  • 여지혜;하경자
    • 대기
    • /
    • 제27권2호
    • /
    • pp.177-188
    • /
    • 2017
  • The development mechanisms of an unusual heavy snowfall event, which occurred in the coast of Jeju Island on 23 January 2016 were investigated through a thermodynamic approach. The formation of heavy snowfall was attributed to the enhanced thermal convection in two ways. First, the convection was enhanced by the air-sea temperature difference between the cold air advection in low-troposphere associated with the strengthening of the Siberian High and abnormal warm sea surface temperature, which is $1{\sim}2^{\circ}C$ higher than normal year over the Yellow Sea (YS). Second, the convective instability was increased by the vertical temperature gradient between the 7 days-sustained cold air advection in low-troposphere and the abrupt cold air intrusion in mid-troposphere induced by the southward shift of a cold cut-off vortex ($-45^{\circ}C$) at the formation stage. Compared to the twelve hours prior to the formation, the low-level moisture increased by 5% through the moisture supply from the YS, and the air-sea temperature difference increased from $18.5^{\circ}C$ to $28.5^{\circ}C$. Furthermore, the upward sensible (latent) heat flux increased 1.5 (1.2) times over the YS before the twelve hours prior to the formation. Thereafter, the sustained moisture supply and upward turbulent heat flux helped to maintain the snowstorm.

강제 대류를 통한 열소산 구조물의 위상최적화 (Topological Optimization of Heat Dissipating Structure with Forced Convection)

  • 윤길호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.408-409
    • /
    • 2008
  • This paper presents a new development for topology optimization of heat-dissipating structure with forced convection. To cool down electric devices or machines, two types of convection models have been widely used: Natural convection model with a large Archimedes number and Forced convection with a small Archimedes number. Nowadays, many engineering application areas such as electrochemical conversion device or fuel cell devices adopt the forced convection to transfer generated heat. Therefore, to our knowledge, it becomes an important issue to design flow channels inside which generated heat transfer. Thus, this paper studies optimal topological designs considering fluid-heat interaction. To consider the effect of the advection in the heat transfer problem, the incompressible Navier-stokes equation is solved. This paper numerically studies the coupling phenomena and presents optimal channel design considering forced convection.

  • PDF

Numerical Study of Snowfall Mechanism arounf Seoul Region

  • Kang, Sung-Dae
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제10권S_1호
    • /
    • pp.29-33
    • /
    • 2001
  • A numerical simulation was carried out to investigate the mechanism of snowfall around the Seoul region during a cold air-outbreak in the winter season. A particular case was selected for this study(Dec. 19, 1999). The inflow directions of the synoptic flow in the upper and lower levels were westerly and north-westerly, respectively. Plus, there was a deep trough and thermal ridge at a level of 500/700/850 hPa over the Bal-Hae region, in the northern part of the Korean peninsula. According to the model results, snowfall occurred around the Seoul region with the simultaneous existence of a strong static instability in the lower atmosphere, northerly or westerly dry air advection, and strong thermal advection toward the Seoul region. There was a strong convergence thereby indicating the existence of convective rolls in the clouds. The main energy source of convection over the Yellow sea was a sensible heat flux. The main moisture source was convection. Radiative cooling in the cloud layer intensified the static instability in the lower atmosphere.

  • PDF

Simulation for the effect of vertical groundwater flux on the subsurface temperature distribution

  • 신지연;이강근
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2006년도 총회 및 춘계학술발표회
    • /
    • pp.383-386
    • /
    • 2006
  • Subsurface temperature is affected by heat advection due to groundwater advection. Temperature-depth profile can be perturbed especially when there are significant vertical groundwater flux caused by external force such as injection or extraction. This research is to clarify the change of subsurface temperature distribution when the 40m x l0m sandy aquifer is stimulated by two different vertical flux($case1:\;{\pm}10^{-5}m^3/s,\;case2:\;{\pm}4{\times}10^{-5}m^3/s$) using a program called HydroGeoSphere. The resulting temperature distribution contour map shows pumping causes vertical attraction of water from deeper and warmer place which result in rising up isotherm. Additionally more injection/extraction rate, more vertical groundwater flux leads to faster Increase in temperature near the pumping well.

  • PDF

지하수류가 밀폐형 천공 지중 열교환기 성능에 미치는 영향(2) (An Influence of Groundwater Flow on Performance of Closed Borehole Heat Exchangers (Part-2))

  • 한정상;김영식;이주현;이병호;한찬
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제21권6호
    • /
    • pp.114-127
    • /
    • 2016
  • An increase of groundwater flux in BHE system creates that ground temperature (locT) becomes lower in summer and higher in winter time. In other words, it improves significantly the performance of BHE system. The size of thermal plume made up by advection driven-flow under the balanced energy load is relatively small in contrast to the unbalanced energy load where groundwater flow causes considerable change in the size of thermal plume as well ground temperature. The ground temperatures of the up gradient and down gradient BHEs under conduction only heat transport are same due to no groundwater flow. But a significant difference of the ground temperature is observed between the down gradient and up gradient BHE as a result of groundwater flow-driven thermal interference took placed in BHE field. As many BHEs are designed under the obscure assumption of negligible groundwater flow, failure to account for advection can cause inefficiencies in system design and operation. Therefore including groundwater flow in the design procedure is considered to be essential for thermal and economic sustain ability of the BHE system.

東海海面 熱交換에 影響을 미치는 大氣 및 海洋的 要因 (Atmospheric and Oceanic Factors Affecting the Air-Sea Thermal Interactions in the East Sea (Japan Sea))

  • 강용규
    • 한국해양학회지
    • /
    • 제19권2호
    • /
    • pp.163-171
    • /
    • 1984
  • 대기 및 해양적 요인들이 동해의 해면을 통한 열교환에 미치는 영향을 구명 하기 위하여, 해양의 열수지에 근거한 해석적인 모델을 만들고, 이 모델을 통하여 동해상 해면 열교환의 각 성분과 대기 온도의 연변화를 해석적으로 재현 (simulation) 하였다. 모델에 의한 이론적인 결과에 의하면, 동해에서 난류에 의한 열수송이 클수록 열복사, 잠열 및 현열의 방출이 증가한다. 그리고 표면수온이 증 가 함에 따라 잠열은 증가하지만, 역복사와 현열은 감소한다. 동해에서 연평균 수온이 1$^{\circ}C$ 증가하면 해상 기온의 연평균이 1.2$^{\circ}C$ 증가하는 효과를 가져오며, 해양의 저열량의 크기는 해면을 통한 열교환의 연변화에 지대한 영향을 미친다.

  • PDF

흐름에 수직한 방향으로 급격한 수심 변화가 존재하는 해역에서의 열오염 이동 예측 해석해 모형 (An Analytical Model for Predicting Heat Transport with a Sharp Depth Change in Cross-Flow Direction)

  • 이호진;김영호
    • 한국해안·해양공학회논문집
    • /
    • 제20권1호
    • /
    • pp.62-72
    • /
    • 2008
  • 본 연구에서는 흐름에 수직한 방향으로 급격한 수심 변화가 존재하는 해역에서 점열원에 의한 열오염 분포를 예측할 수 있는 해석 모델을 개발하였다. 개발된 모델을 이용하여 열오염 분포에 있어 수심 변화와 흐름효과를 검토하였다. 계산 결과 흐름에 수직한 방향으로 수심 변화가 존재할 경우 수평 확산 플럭스의 증감으로 인해 수심 변화 경계를 가로지르는 열의 이동이 증가하거나 감소하는 것으로 나타났다. 조류와 동시에 잔차류 성분을 포함할 경우에는 이류에 의한 열오염 수송 효과가 증가하여 수심 변화 경계를 가로지르는 수평 확산은 상대적으로 감소하였다.

스탠딩컬럼웰(SCW)을 적용한 지열히트펌프의 수치적 모델링과 검증 (A numerical simulation and validation of heat pump using standing column well(SCW))

  • 장재훈;박두희
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.785-790
    • /
    • 2010
  • Geothermal energy is gaining wide attention as a highly efficient renewable energy and being increasingly used for heating/cooling systems of buildings. The standing column well (SCW) is especially efficient, cost-effective, and suitable for Korean geological and hydrological conditions. However, a numerical model that simulates the SCW has not yet been developed and applied in Korea. This paper describes the development of the SCW numerical model using a finite-volume analysis program. The model performs the hydro-thermal coupled analyses and simulates heat transfer through advection, convection, and conduction. The accuracy of the model was verified through comparisons with field data measured at SCWs in Korea. Comparisons indicated that the SCW numerical model can closely predict the performance of a SCW.

  • PDF

대류권계면 접힘에 의한 중규모 강설 발달에 대한 사례 연구 (A Case Study of Mesoscale Snowfall Development Associated with Tropopause Folding)

  • 김진연;민기홍;김경익;이규원
    • 대기
    • /
    • 제23권3호
    • /
    • pp.331-346
    • /
    • 2013
  • A case study of mesoscale snowfall with polar low signature during 25~26 December 2010 in South Korea is presented. The data used for analysis include surface and upper level weather charts, rain gauge, sea surface temperature, satellite imagery, sounding, and global $1^{\circ}{\times}1^{\circ}$ reanalysis data. The system initiated with a surface trough near the bay of Bohai but quickly intensified to become a polar low within 12 hours. The polar low moved southeastward bringing snowfall to southwestern Korea. There was strong instability layer beneath 800 hPa but baroclinicty was weak and disappeared as the low progressed onto land. Shortwave at 500 hPa and the surface trough became in-phase which hindered the development of the polar low while it approached Korea. However, there were strong tropopause folding (~500 hPa) and high potential vorticity (PV), which allowed the system to maintain its structure and dump 20.3 cm of snow in Jeonju. Synoptic, thermodynamic, dynamic, and moisture analyses reveal that polar low developed in an area of baroclinicity with strong conditional instability and warm air advection at the lower levels. Further, the development of a surface trough to polar low was aided by tropopause folding with PV advection in the upper level, shortwave trough at 500 hPa, and moisture advection with low-level jet (LLJ) of 15 m $s^{-1}$ or more at 850 hPa. Maximum snowfall was concentrated in this region with convection being sustained by latent heat release.