• Title/Summary/Keyword: Advanced water treatment system

Search Result 202, Processing Time 0.025 seconds

Nutrients removal enhancement using a modified rotating activated bacillus contactor (RABC) process (수정 RABC 공정을 이용한 영양염류 제거능 제고에 관한 연구)

  • Kim, Sunhee;Kim, Donghwan;Jang, Giung;Kim, Eung-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.1
    • /
    • pp.99-104
    • /
    • 2016
  • This study was performed to develop a new process technology for advanced wastewater treatment using a modified Rotating Activated Bacillus Contactor (RABC) process that adopts anoxic-oxic suspended biomass tanks to enhance nutrients removal. A modified lab-scale RABC process was applied to examine its applicability and to obtain the design factors for the optimum operation of the system. The modified RABC process showed a little more stable and high nutrients removal efficiency than the prototype RABC process: about 70% of nitrogen and 55% of phosphorous removal when the low organic loading (influent COD 200mg/L). However, the processing efficiency of nutrients removal rates was enhanced to great extent when high organic loading: nitrogen 90% and phosphorous 85% (influent COD 500mg/L). High organic loading stimulated extremely good biomass attachment on the reticular carrier RABC stage and the excellent nutrients removal, nevertheless with almost no offensive odor.

Advanced Wastewater Treatment Using Biofilter System with Floating Media under Alternative Flow (유로변경식 부상여재 생물여과시스템을 이용한 하수고도처리)

  • Ryu, Hong-Duck;Lee, Jeong-Hun;Lee, Sang-Ill
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.250-257
    • /
    • 2006
  • The objective of this study is to propose an alternative process for the small sewage treatment plants in rural communities. A biofilter has been used for biological wastewater treatment, which is becoming the alternative to the conventional activated sludge system. The proposed process used in this study, which is packed with floating media (i.e. expanded polystylene), has advantages of biofilter system and alternative flow system and they are incorporated into one process. Pilot and bench scale studies were performed using domestic wastewater. In the results of pilot plant study, it was observed that the stable effluent water quality was achieved and it met the present effluent criteria of suspended solid (SS), organic matters, T-N and T-P. In the study for determination of the cycle of backwashing, it was observed that the cycle of backwashing depended on BOD loading rates of influents. In the BOD loading rates of $0.5kg\;BOD/m^3{\cdot}day$ and $1.0kg\;BOD/m^3{\cdot}day$, the backwashing cycle of 28 hour and 16 hour were needed, respectively. The optimum backwashing time was 120~80 seconds at the media expansion rate of 50%. In the removal of SS, organic matters, T-N and T-P, SS removal was rather achieved by physical filtration than biological mechanism and the removal of organic matters except for SS, T-N and T-P were mainly rather achieved by biological mechanism than physical filtration. In bench-scale study, the effects of recirculation rate was investigated on removal of SS, TCOD, T-N and T-P. It was observed that the recirculation made removal efficiencies of SS, TCOD, T-N and T-P increased. Especially, in T-N removal, the increase of T-N removal efficiency of 40% was observed in the reicirculation rate of 1Q compared with 0Q.

Anodizing Behavior and Silicides Control in Al-Si Alloy System (Al-Si 합금의 양극산화거동 및 규소화합물 제어)

  • Park, Jong Moon;Kim, Ju Seok;Kim, Jae Kwon;Kim, Su Rim;Park, No Jin;Oh, Myung Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.1
    • /
    • pp.6-11
    • /
    • 2018
  • The anodic oxidation behavior of Si-containing aluminum alloy for diecasting was investigated. Especially, the property changes during anodization both on aluminum 1050 and 9 weight percentage silicon containing aluminum (Al-9Si) alloys were analyzed by the static current test. In order to fabricate a uniform anodic oxidation film by effect of Al-Si compound, nitric acid containing hydrofluoric acid had been used as a desmutter for aluminum alloy after alkaline etching. It was found that the level of voltage of Al-9Si alloy during the static current test was almost as double as higher than aluminum 1050 through anodization. By adding hydrofluoric acid in the nitric acid electrolyte, the silicon compound on the surface was removed, and the optimum amount of added hydrofluoric acid could be derived. It was also observed that the size of silicon compound formed on the surface could be refined by heat treatment at $500^{\circ}C$ and followed water quenching.

Characteristics of Advanced Wastewater Treatment Process Using High MLSS in Anoxic Tank (무산소조에서 고농도 미생물을 이용한 하수고도처리공정의 처리특성)

  • Son, Dong-Hun;Lim, Bong-Su;Park, Hye-Sook
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.1
    • /
    • pp.42-47
    • /
    • 2004
  • This study was accomplished to develope an advanced wastewater treatment process using high MLSS in anoxic tank aimed to improve nutrient removal and to reduce wasting sludge. It was operated with 4 Modes with varing solid concentration and internal recycle ratios. Mode I, II, III was operated 1.0~1.5% MLSS concentration at anoxic tank with 50% sludge recycle rate, however, each internal recycle rate were 100%, 200%, 300% and Mode IV was operated 1.5~2.0% MLSS concentration at anoxic tank with 50% sludge recycle rate and 100% internal recycle rate. The COD removal efficiency didn't show any big difference from Mode I to IV. The average COD removal rate was over than 90%. The T-N removal rate was 73%, the highest rate in all mode. The 36% of SCOD is used for the denitrification and phosphorus release in the anoxic tank. Specific denitrification rate was 3.5mg $NO_3{^-}-N/g$ Mv/hr and denitrification time was 0.7hr. As MLSS concentration is higher in anoxic tank as denitrification time would be shorter. The T-P removal rate was average 70%. The phosphorus release accomplished from the anoxic tank because the anaerobic condition was prevalent in the anoxic due to the prompt completion of denitrification. Sludge production was 0.28 kgVSS/kg $BOD_{removed}$ under the 1.5% MLSS and 17 day SRT. It is prominent result which has 40% sludge reduce comparing with traditional activate sludge system.

Environmental Accounting of the Total Maximum Daily Loads (TMDL) Program in the Nakdong River Basin using the Emergy Analysis (Emergy 분석을 이용한 낙동강유역의 오염총량관리계획에 대한 환경회계)

  • Kim, Jin Lee;Lee, Su-Woong;Kim, Yong-Seok;Lee, Suk-Mo
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.3
    • /
    • pp.349-356
    • /
    • 2011
  • This study, which evaluated the contribution of the real economic value and system in the Nakdong River Basin, estimated the emergy analysis for environmental accounting of the TMDL program. And an environmental accounting for TMDL is evaluated before and after adopting TMDL program respectively. The value of emergy after adopting the TMDL was 7.90 E+20 sej/yr. Although the real yield of the river after governmental investment was high (before: 9.7118 E+20 sej/yr and after: 9.7224 E+20 sej/yr), the effects of improvement was not great, in terms of an investment cost. The benefit/cost ratio resulted from environmental accounting has decreased from 1.493 to 1.230 due to the cost of managing treatment facilities. The method of improving water quality in the Nakdong River Basin by the TMDL program should be changed into an ecological treatment facilities using resources efficiently from a control of water quality depending on expansion of the wastewater treatment facilities and advanced treatment plant using high cost and non-renewable energies.

Degradation and Neutralization of Total Residual Oxidant (TRO) in the Treated Ballast Water by Ozonation

  • Park, Sung-Jin;Bin, Jung-In;Lee, Eon-Sung;Kim, In-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.399-406
    • /
    • 2010
  • The aims of this study are to provide data on the ozone dosage control system and TRO sensor performance, to assess the performance of the degradation of total residual oxidant (TRO) neutralizer and to provide data on degradation rates of TRO in the ballast tanks, following treatment by the Ozone BWTS. This study includes the results of an evaluation of the TRO neutralizer, which was tested on the test barge. Accordingly, it has undertaken the evaluation of TRO degradation rates following treatment by the Ozone BWTS.

The Utility of Measuring Assimiliable Organic Carbon (AOC) as an Indicator of Biostability in Distribution Systems for Finished Water

  • Chang, Young-Cheol;Toyama, Tadashi;Jung, Kweon;Kikuchi, Shitaro
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.6
    • /
    • pp.539-542
    • /
    • 2006
  • The objective of this paper is to compare the applicability of assimilable organic carbon (AOC) or biodegradable dissolved organic carbon (BDOC) for quantifying biodegradable organic material (BOM) and bio-stability in distribution systems for a variety of finished waters. The study the data is derived from was part of an AWWARF and Tampa Bay Water tailored collaboration project to determine the effect of blending different waters on distribution system water quality. Seven different finished waters were produced from surface, ground, or brackish water on site and fed 18 independent pilot distribution systems (PDSs), either as single finished water or as a blend of several finished waters. AOC and BDOC have often been used as indicators of bacterial regrowth potential in distribution systems. In this study, AOC was the more useful assay of the two for the BOM concentrations observed in the PDSs. BDOC did not distinguish BOM while AOC did at the low BOM levels from many of the advanced treatments (e.g. RO, $O^3/BAC$). AOC in contrast allowed much more meaningful calculations of the consumption or production of AOC as the blends passed through the PDSs even for very low BOM blends. In addition, meaningful trends corresponding to changes in heterophic plate count (HPC) were observed for AOC but not for BDOC. Moreover, AOC stability was associated with waters produced from advanced membrane treatment.

An Experimental Study on Evaluation of Bond Strength of Arc Thermal Metal Spaying According to Treatment Method of Water Facilities Concrete Surface (수처리 시설물 콘크리트 표면처리 방법에 따른 금속용사 피막의 부착성능 평가에 관한 실험적 연구)

  • Park, Jin-Ho;Lee, Han-Seung;Shin, Jun-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.2
    • /
    • pp.107-115
    • /
    • 2016
  • In this study, the bond strength of metal spraying system by surface treatment of concrete (waterproof/corrosion method) in water treatment facilities was evaluated. The results showed that the system with Sa-P-R-(S) (sanding-perviousness surface hardener-surface roughness agent-metal spraying-sealing) led to the desirable performance. The bond strength, the coefficient of water permeability and air permeability were 3.7MPa, $0.68{\ast}10^{-8}cm/sec$, and $0.45{\ast}10^{-16}m^2$, respectively. In scanning electron microscope analysis, the microstructure of specimen coated with perviousness surface hardener was much denser than that without it. Therefore, the specimen coated with sanding-perviousness surface hardener-surface roughness agent-metal spraying-sealing had the best bond performance and was the most suitable system to concrete surface in water treatment facilities.

Effect of powder activated carbon replacement on HCPAC-MBR system operation (고농도 분말활성탄 결합 MBR 운전에 대한 활성탄 교체주기의 영향)

  • Lee, Chae-Ha;Kim, Jin-Tae;Lee, Jung-Hyun;Seo, Gyu-Tae;Kim, In S.
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.1
    • /
    • pp.141-148
    • /
    • 2008
  • This study was conducted to evaluate the effect of PAC(Powder Activated Carbon) retention time on stable operation of high concentration powered activated carbon(HCPAC-MBR) in the treatment of secondary domestic wastewater. The pilot scale HCPAC-MBR system was operated at two different SRTs, 25 days and 100 days. The main drawback of HCPAC-MBR system was the rapid increase of trans-membrane pressure. The increase rate of trans-membrane pressure was proportional to SRT value at constant flux. This result seemed to be caused by reduced amount of EPS adsorbed on the PAC in the reactor by decreasing the SRT of the PAC. The particle size of the PAC was also influenced by SRT. The PAC size was decreased as SRT was increased. The change of particle size could be one reason for the change of trans-membrane pressure. The pore volume in the cake-layer formed on the membrane surface became to be increased by reducing SRT, because the cake-layer was highly composed of the PAC. Therefore, increased pore volume might play a role to reduce the trans-membrane pressure. The removal rate of E260 and TOC was also inversely proportional to SRT value.

Application of Laser-Induced Fluorescence for EDC monitoring in aquatic system

  • Ko Eun-Joung;Kim Kyoung-Woong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.117-121
    • /
    • 2005
  • In order to monitor the levels and seasonal variations of EDCs, samples of the discharged effluent from sewage & wastewater treatment plants and river waters were collected. The target EDCs including bisphenol A and alkylphenols were determined by Laser-induced fluorescence(LIF) as in-situ monitoring technique. The category of EDCs showed similar fluorescence spectra and nearly equal decay time. This point makes it hard to distinguish each EBCs from the EDCs mixture by LIF and LIF results were expressed only by the total EDCs. However, LIF monitoring results and GC-MS results was comparable. The correlation coefficient between EDCs concentration acquired from GC-MS and fluorescence intensity from LIF was significant. This study supports the feasibility of the application of LIF into EDCs monitoring In aquatic system.

  • PDF